
Volume 18 (2022) PROGRESS IN PHYSICS Issue 1 (April)
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Transcendental ratios of physical quantities can inhibit the occurrence of destabilizing
parametric resonance and in this way, provide stability in systems of coupled periodic
processes. In this paper we apply this approach to the solar system and show that it can
explain the current set of rotational and orbital periods and distances including observed
tendencies of their evolution.

Introduction

One of the unsolved fundamental problems in physics [1] is
the stability of systems of a large number of coupled peri-
odic processes, for instance, the stability of planetary sys-
tems. If numerous bodies are gravitationally bound to one
another, perturbation models predict long-term highly unsta-
ble states [2] that contradict the physical reality of the solar
system and thousands of exoplanetary systems.

Another issue is that in theory, there are infinitely many
pairs of orbital periods and distances that fulfill Kepler’s laws.
Regrettably, Einstein’s field equations do not reduce the the-
oretical variety of possible orbits, but increases it even more.
As a consequence, the current orbital system of the Sun seems
to be accidental, and its stability a miracle.

Furthermore, there is no known law concerning the ro-
tation of celestial bodies besides conservation of the angular
momentum [3] that they retain from the protoplanetary disk,
so that also the current distribution of the rotational periods
appears as to be accidental.

However, many planets in extrasolar systems like Trap-
pist 1 or Kepler 20 have almost the same orbital periods as
the large moons of Jupiter, Saturn, Uranus and Neptune [4].
Trappist 1 is 40 light years away from our solar system [5]
and Kepler 20 nearly 1000 light years [6].

The question is, why they prefer similar orbital periods
if there are infinite possibilities? Obviously, there are orbital
periods preferred anywhere in the galaxy. Why these orbital
periods are preferred? What makes them attractive?

In this paper, we introduce an approach to the problem of
stability based on the physical interpretation of certain state-
ments of number theory. This approach leads us to the con-
clusion that in real systems, bound periodic processes approx-
imate transcendental frequency ratios that allow them to avoid
destabilizing parametric resonance. We illustrate this conclu-
sion on some well-known features of the solar system which
are still unexplained.

Theoretical Approach

The starting point of our approach is the measurement as it
is the source of data that allow us developing and proofing
theoretical models of the reality. The result of a measure-

ment is the ratio of physical quantities where one of them is
the reference quantity called unit of measurement. Whether
measuring a wavelength or phase, a frequency, the speed or
duration of some process, the mass of a body or its temper-
ature, initially this ratio is a real number, regardless of its
subsequent interpretation as component of a vector or tensor,
for example. As real value, this ratio can approximate an in-
teger, rational, irrational algebraic or transcendental number.
In [7] we have shown that the difference between rational, ir-
rational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of stabil-
ity in systems of bound periodic processes. For instance, inte-
ger frequency ratios, in particular fractions of small integers,
make possible parametric resonance that can destabilize such
a system [8,9]. For instance, asteroids cannot maintain orbits
that are unstable because of their resonance with Jupiter [10].
These orbits form the Kirkwood Gaps, which are areas in the
asteroid belt where asteroids are absent.

According to this idea, irrational ratios should not cause
destabilizing resonance interactions, because irrational num-
bers cannot be represented as a ratio of integers. However, al-
gebraic irrational numbers, being real roots of algebraic equa-
tions, can be converted to rational numbers by multiplica-
tion. For example, the algebraic irrational number

√
2 =

1.41421 . . . cannot become a frequency scaling factor in real
systems of coupled periodic processes, because

√
2 ·
√

2 = 2
creates the conditions for the occurrence of parametric reso-
nance. Thus, only transcendental ratios can prevent paramet-
ric resonance, because they cannot be converted to rational or
integer numbers by multiplication.

Actually, it is transcendental numbers, that define the pre-
ferred frequency ratios which allow to avoid destabilizing res-
onance [11]. In this way, transcendental frequency ratios sus-
tain the lasting stability of coupled periodic processes. With
reference to the evolution of a planetary system and its stabil-
ity, we may therefore expect that the ratio of any two orbital
periods should finally approximate a transcendental number.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting parametric resonance between any
coupled periodic processes including their derivatives.
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Because of this unique property of Euler’s number, we ex-
pect that periodic processes in real systems prefer frequency
ratios close to Euler’s number and its roots. The natural log-
arithms of those frequency ratios are therefore close to in-
teger 0,±1,±2, . . . or rational ±1/2,±1/3,±1/4, . . . values.
For rational exponents, the natural exponential function is al-
ways transcendental [12]. As shown by A. Khinchine [13],
any rational number has a biunique presentation as a finite
continued fraction. Consequently, we can present the natural
logarithms of the frequency ratios we are looking for as finite
continued fractions:

ln (ωA/ωB) = F = 〈n0; n1, n2, . . . , nk〉 (1)

ωA and ωB are the angular frequencies of two bound peri-
odic processes A and B avoiding parametric resonance. We
use angle brackets for continued fractions. All denominators
n1, n2, . . . , nk of a continued fraction including the free link
n0 are integer numbers. All numerators equal 1. The length
of a continued fraction is given by the number k of layers.

Finite continued fractions represent all rational numbers
in the sense that there is no rational number that cannot be
represented by a finite continued fraction. This universality of
continued fractions evidences that the distribution of rational
logarithms (1) in the number continuum is fractal.

The first layer of this fractal is given by the truncated after
n1 continued fractions:

〈n0; n1〉 = n0 +
1
n1

The denominators n1 follow the sequence of integer numbers
±1, ±2, ±3 etc. The second layer is given by the truncated
after n2 continued fractions:

〈n0; n1, n2〉 = n0 +
1

n1 +
1
n2

Figure 1 shows the first and the second layer in compari-
son. As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . .
are the attractor points of the fractal. In these points, the
distribution density of rational logarithms (1) reaches a lo-
cal maximum. Integers 0,±1,±2, . . . define the main attrac-
tors. Consequently, integer arguments of the natural exponen-
tial function define attractor points of transcendental numbers
and ranges of stability that allow bound periodic processes to
avoid parametric resonance.

Figure 1 shows that integer logarithms 0,±1,±2, . . . form
the widest ranges of stability. Half logarithms ±1/2 form
smaller ranges, third logarithms ±1/3 form the next smaller
ranges and fourth logarithms ±1/4 form even smaller ranges
of stability etc. Increasing the length of the continued fraction
(1), the distribution density of the transcendental frequency

ratios ωA/ωB is increasing as well. Nevertheless, their dis-
tribution is not homogeneous, but fractal. Applying contin-
ued fractions and truncating them, we can represent the loga-
rithms ln (ωA/ωB) as rational numbers 〈n0; n1, n2, . . . , nk〉 and
make visible their fractal distribution.

Fig. 1: The distribution of rational logarithms for k = 1 (above) and
for k = 2 (below) in the range -16F 6 1.

Here I would like to underline that the application of contin-
ued fractions doesn’t limit the universality of our conclusions,
because continued fractions deliver biunique representations
of all real numbers including transcendental. Therefore, the
fractal distribution of transcendental ratios (1) is an inherent
feature of the number continuum that we call the Fundamen-
tal Fractal [11].

The natural exponential function exp (F ) of the rational
argument F = 〈n0; n1, n2, . . . , nk〉 generates a fractal set of
transcendental frequency ratios ωA/ωB = exp (F ) which al-
low to avoid destabilizing parametric resonance and in this
way, provide the lasting stability of periodic processes bound
in systems regardless of their complexity. This conclusion we
have exemplified [14] in particle physics, astrophysics, geo-
physics, biophysics and engineering.

For bound harmonic quantum oscillators, the continued
fractionsF define not only ratios of frequenciesω, oscillation
periods τ = 1/ω and wavelengths λ = c/ω, but also ratios
of accelerations a = c · ω, energies E = ~ · ω and masses
m = ω · ~/c2, which allow to avoid parametric resonance.

Fig. 2: The first layer (k = 1) of equipotential surfaces of the Funda-
mental Field in the 2D-projection in the range -16F 6 1.

The spatio-temporal projection of the Fundamental Fractal
F is a fractal scalar field of transcendental attractors, the
Fundamental Field [15]. The connection between the spa-
tial and temporal projections is given by the speed of light
c = 299792458 m/s. The constancy of c makes both projec-
tions isomorphic, so that there is no arithmetic or geometric
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difference. Only the units of measurement are different. Fig-
ure 2 shows the 2D-projection exp (F ) of its first layer. The
Fundamental Field is topologically 3-dimensional, a fractal
set of embedded spheric equipotential surfaces. The loga-
rithmic potential difference defines a gradient directed to the
center of the field that causes a central force of attraction cre-
ating the effect of a field source. Because of the fractal loga-
rithmic hyperbolic metric of the field, also every equipotential
surface is an attractor. The logarithmic scalar potential differ-
ence ∆F of sequent equipotential surfaces equals the differ-
ence of sequent continued fractions (1) on a given layer:

∆F = 〈n0; n1, . . . , nk〉 − 〈n0; n1, . . . , nk + 1〉

Main equipotential surfaces at k = 0 correspond with integer
logarithms (1); equipotential surfaces at deeper layers k > 0
correspond with rational logarithms.

The Fundamental Field is of pure arithmetic origin, and
there is no particular physical mechanism required as field
source. It is all about transcendental ratios of frequencies [11]
that allow coupled periodic processes to avoid destabilizing
parametric resonance. Hence, the Fundamental Field con-
cerns all repetitive processes which share at least one charac-
teristic – the frequency. Therefore, we postulate the universal-
ity of the Fundamental Field that affects any type of physical
interaction, regardless of its complexity.

Property Electron Proton

E = mc2 0.5109989461(31) MeV 938.2720813(58) MeV

ω= E/~ 7.76344 · 1020 Hz 1.42549 · 1024 Hz

τ= 1/ω 1.28809 · 10−21 s 7.01515 · 10−25 s

λ= c/ω 3.86159 · 10−13 m 2.10309 · 10−16 m

Table 1: The basic set of physical properties of the electron and
proton. Data from Particle Data Group [21]. Frequencies, oscillation
periods and wavelengths are calculated.

In fact, scale relations in particle physics [16, 17], nuclear
physics [18,19] and astrophysics [15,20] obey the same Fun-
damental Fractal (1), without any additional or particular set-
tings. The proton-to-electron rest energy ratio approximates
the first layer of the Fundamental Fractal that could explain
their exceptional stability [14]. Normal matter is formed by
nucleons and electrons because they are exceptionally stable
quantum oscillators. In the concept of isospin, proton and
neutron are viewed as two states of the same quantum oscil-
lator. Furthermore, they have similar rest masses. However,
a free neutron decays into a proton and an electron within
15 minutes while the life-spans of the proton and electron
top everything that is measurable, exceeding 1029 years [21].
The proton-to-electron ratio (tab. 1) approximates the seventh

power of Euler’s number and its square root:

ln
(

Ep

Ee

)
= ln

(
938.2720813 MeV
0.5109989 MeV

)
' 7 +

1
2

= 〈7; 2〉

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e connects attrac-

tors of proton stability with similar attractors of electron sta-
bility in alternating sequence.

Applying Khinchine’s [13] continued fraction method, we
get the best approximation of the proton-to-electron ratio:

ln
(

Ep

Ee

)
= 7 +

1
2

+
1

64 +
9
11

= 7.515427769 . . .

Recent data [22] of the proton-to-electron ratio define the up-
per limit as 7.515427773 and the lower limit 7.515427702.
The same method delivers for the neutron-to-proton ratio:

ln
(

En

Ep

)
=

1
726

By the way, 726 = 11 · 11 · 6. The denominator 11 appears
also in the W/Z-to-electron ratio [11], for example:

ln
(

EZ

Ee

)
= 12 +

1
11

The unique properties of the electron and proton predestinate
their physical characteristics as fundamental units. Table 1
shows the basic set of electron and proton units that can be
considered as a Fundamental Metrology (c is the speed of
light in a vacuum, ~ is the Planck constant). In [23] was
shown that the fundamental metrology (tab. 1) is completely
compatible with Planck units [24]. Originally proposed in
1899 by Max Planck, these units are also known as natural
units, because the origin of their definition comes only from
properties of nature and not from any human construct. Max
Planck wrote [25] that these units, “regardless of any particu-
lar bodies or substances, retain their importance for all times
and for all cultures, including alien and non-human, and can
therefore be called natural units of measurement”. Planck
units reflect the characteristics of space-time.

We hypothesize that scale invariance according the Fun-
damental Fractal (1) calibrated on the physical properties of
the proton and electron is a universal characteristic of orga-
nized matter and criterion of stability. This hypothesis we
have called Global Scaling [14].

On this background, atoms and molecules emerge as sta-
ble eigenstates in fractal chain systems of harmonically oscil-
lating protons and electrons. Andreas Ries [18] demonstrated
that this model allows for the prediction of the most abundant
isotope of a given chemical element.

In the following, we use the symbol Fe for the Funda-
mental Fractal (1) calibrated on the properties of the electron,
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and the symbol Fp for the Fundamental Fractal calibrated on
the properties of the proton. For example, Fe〈66〉 means the
main attractor 66 of electron stability. In the solar system,
this attractor stabilizes the orbital period of Jupiter [7].

In [15] we applied the Fundamental Fractal (1) to plane-
tary systems interpreting gravity as macroscopic attractor ef-
fect of transcendental frequency ratios in chain systems of
harmonic quantum oscillators – protons and electrons. In [26]
we demonstrated that the Fundamental Field (fig. 2) in the
interval of the main attractors 〈49〉 6 Fp 6 〈52〉 of pro-
ton stability reproduces the 3D profile of the Earth’s inte-
rior confirmed by seismic exploration. As well, the stratifica-
tion layers in planetary atmospheres follow the Fundamental
Field [27]. In [28] we have shown that the Fundamental Frac-
tal determines the Earth axial precession cycle, the obliquity
variation cycle as well as the apsidal precession cycle and the
orbital eccentricity cycle. There we have also shown that re-
cently discovered geological cycles, like the 27 million years’
cycle [29], as well as the periodic variations in the movement
of the Solar system through the Galaxy, substantiate their de-
termination by the Fundamental Fractal.

The orbital and rotational periods of planets, planetoids
and large moons of the solar system correspond with attrac-
tors of electron and proton stability [23]. This is valid also
for exoplanets [4] of the systems Trappist 1 and Kepler 20.
In [15] we have shown that the maxima in the frequency
distribution of the orbital periods of 1430 exoplanets listed
in [30] correspond with attractors of the Fundamental Frac-
tal. As well, the maxima in the frequency distribution of the
number of stars in the solar neighborhood as function of the
distance between them correspond with attractors of the Fun-
damental Fractal [20].

Exemplary applications

Jupiter’s orbital period TO(Jupiter) = 4332.59 days [31] ap-
proximates the main attractor Fe〈66〉 of electron stability that
equals the 66th power of Euler’s number multiplied by the
oscillation period of the electron (see tab. 1):

ln
(

TO(Jupiter)
2π · τe

)
= ln

(
4332.59 · 86400 s

2π · 1.28809 · 10−21 s

)
= 66.00

Jupiter’s distance from Sun approximates the main equipo-
tential surface Fe〈56〉 of electron stability that equals the 56th

power of Euler’s number multiplied by the Compton wave-
length of the electron. The aphelion 5.45492 AU = 8.160444 ·
1011 m delivers the upper approximation:

ln
(

AO(Jupiter)
λe

)
= ln

(
8.160444 · 1011 m
3.86159 · 10−13 m

)
= 56.01

The perihelion 4.95029 AU = 7.405528 · 1011 m delivers the
lower approximation:

ln
(

PO(Jupiter)
λe

)
= ln

(
7.405528 · 1011 m
3.86159 · 10−13 m

)
= 55.91

Now we can apply Kepler’s 3rd law of planetary motion and
express the gravitational parameter µS un of the Sun through
Euler’s number, the speed of light c in a vacuum and the os-
cillation period τe of the electron:

µS un = τe · c3 · e36

In logarithms, the cube of the mean orbit radius divided by
the square of the orbital period 56 · 3 − 66 · 2 = 36 results
in the 36th power of Euler’s number. In this way, within our
numeric physical approach, the gravitational parameter of the
Sun does not appear to be accidental, but is stabilized by Eu-
ler’s number and origins from the quantum physical proper-
ties of the electron.

In a similar way, we can derive the attractor that the grav-
itational parameter of Jupiter is approximating. Thanks to the
negligible eccentricities of the orbits of Jupiter’s large moons,
we can use the mean orbit radius for calculations. Callisto’s
orbit radius RO(Callisto) = 1.8827 · 109 m approaches the
equipotential surface Fe〈50〉 of electron stability:

ln
(

RO(Callisto)
λe

)
= ln

(
1.8827 · 109 m

3.86159 · 10−13 m

)
= 49.95

Callisto’s orbital period TO(Callisto) = 16.689 days is ap-
proaching the attractor Fe〈60; 2〉 of electron stability:

ln
(

TO(Callisto)
2π · τe

)
= ln

(
16.689 · 86400 s

2π · 1.28809 · 10−21 s

)
= 60.45

For reaching both attractors, Callisto must still increase its or-
bital period by 10 hours and of course, its mean orbit radius
as well. Now we can apply Kepler’s 3rd law of planetary mo-
tion and express the gravitational parameter µJupiter of Jupiter
through Euler’s number:

µJupiter = τe · c3 · e29

In logarithms, the cube of the mean orbit radius divided by the
square of the orbital period 50 · 3− (60 + 1/2) · 2 = 29 results
in the 29th power of Euler’s number. In this way, Jupiter’s
gravitational parameter approximates the attractor Fe〈29〉 of
electron stability.

Now we can derive the attractor that the gravitational pa-
rameter of the Earth is approximating. The orbital distance of
the Moon from Earth approximates the equipotential surface
Fe〈48; 3〉 of electron stability that equals the 48th power of
Euler’s number and its cubic root multiplied by the electron
wavelength. The apoapsis of the Moon AO = 4.067 · 108 m
delivers the upper approximation:

ln
(

AO(Moon)
λe

)
= ln

(
4.067 · 108 m

3.86159 · 10−13 m

)
= 48.41

Periapsis 3.626 · 108 m delivers the lower approximation:

ln
(

PO(Moon)
λe

)
= ln

(
3.626 · 108 m

3.86159 · 10−13 m

)
= 48.29
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The orbital period TO(Moon) = 27.32166 days approaches
the main attractor Fe〈61〉 of electron stability:

ln
(

TO(Moon)
2π · τe

)
= ln

(
27.32166 · 86400 s

2π · 1.28809 · 10−21 s

)
= 60.95

For reaching this attractor, the Moon must increase its dis-
tance from Earth, and that’s exactly what the Moon does [32].
However, our approach predicts an increase only until Moon’s
orbital period reaches the main attractorFe〈61〉 = 29.08 days.
Now we can apply Kepler’s 3rd law of planetary motion and
express the gravitational parameter µEarth of the Earth through
Euler’s number:

µEarth = τe · c3 · e23

In logarithms, the cube of the mean orbit radius divided by
the square of the orbital period (48 + 1/3) · 3 − 61 · 2 = 23
results in the 23th power of Euler’s number. Consequently,
also the gravitational parameter of the Earth does not appear
to be accidental, but origins from the quantum physical prop-
erties of the electron and is approaching a main attractor of
the Fundamental Fractal.

In a similar way, we can derive the attractors that the grav-
itational parameters of other planets are approximating. Pho-
bos’ mean orbit radius approximates the equipotential surface
Fe〈45;−3〉 while its orbital period is stabilized by the attrac-
tor Fe〈56; 2〉. Consequently, the gravitational parameter of
Mars approximates the attractor Fe〈21〉, because (45 − 1/3) ·
3 − (56 + 1/2) · 2 = 21:

µMars = τe · c3 · e21

The gravitational parameter of Uranus approximates the cen-
ter of scale symmetry (23 + 29)/2 = 26 between the gravita-
tional parameters of the Earth Fe〈23〉 and Jupiter Fe〈29〉:

µUranus = τe · c3 · e26

Neptune’s gravitational parameter approaches the same at-
tractor Fe〈26〉, but for reaching it, Neptune’s moon system
must become larger. Saturn’s gravitational parameter approx-
imates the center of scale symmetry (26 + 29)/2 = 27 + 1/2
between the parameters of Uranus Fe〈26〉 and Jupiter Fe〈29〉:

µS aturn = τe · c3 · e27+1/2

Because the scaling factor
√

e links attractors of electron sta-
bility to corresponding attractors of proton stability, the mean
orbit radius of Saturn’s largest moon Titan approximates also
the main equipotential surface Fp〈57〉. Titan’s apoapsis AO =

1.25706 · 109 m delivers the upper approximation:

ln
(

AO(Titan)
λp

)
= ln

(
1.25706 · 109 m

2.10309 · 10−16 m

)
= 57.05

Periapsis 1.18668 · 109 m delivers the lower approximation:

ln
(

PO(Titan)
λp

)
= ln

(
1.18668 · 109 m

2.10309 · 10−16 m

)
= 56.99

And Titan’s orbital period TO = 15.945 days is approaching
the main attractor Fp〈68〉 of proton stability:

ln
(

TO(Titan)
2π · τp

)
= ln

(
15.945 · 86400 s

2π · 7.01515 · 10−25 s

)
= 67.92

In this way, Saturn’s gravitational parameter approximates
also the attractor Fp〈35〉, because 57 · 3 − 68 · 2 = 35 re-
sults in the 35th power of Euler’s number, multiplied by the
oscillation period of the proton:

µS aturn = τp · c3 · e35

Besides conservation of angular momentum [33], there is no
known law concerning the rotation of celestial bodies. The
more remarkable is the correspondence of the rotation periods
of planets, planetoids and large moons with attractors of the
Fundamental Fractal (1) as shown in [15]. Here we give some
of the most expressive examples.

In the solar system, the 66th power of Euler’s number sta-
bilizes not only the orbital period 4332.59 days of Jupiter, but
also the orbital period 686.971 days of Mars and the rotational
period 9.074 hours of the planetoid Ceres, the largest body of
the main asteroid belt that orbits the Sun between Mars and
Jupiter. The difference lays in the reference units. While in
the case of Jupiter’s orbital period, the reference unit is the
oscillation period of the electron 2πτe, in the case of Mars, it
is the angular oscillation period of the electron τe:

ln
(

TO(Mars)
τe

)
= ln

(
686.971 · 86400 s
1.28809 · 10−21 s

)
= 66.00

And in the case of the rotational period of Ceres, the reference
unit is the angular oscillation period of the proton τp:

ln
(

TR(Ceres)
τp

)
= ln

(
9.07417 · 3600 s
7.01515 · 10−25 s

)
= 66.01

The rotational periods of Mars and Earth approximate the
next main attractor Fp〈67〉 of proton stability:

ln
(

TR(Mars)
τp

)
= ln

(
24.62278 · 3600 s
7.01515 · 10−25 s

)
= 67.01

ln
(

TR(Earth)
τp

)
= ln

(
23.93447 · 3600 s
7.01515 · 10−25 s

)
= 66.98

Mercury’s period 58.64615 days of rotation is approaching
the main attractor Fp〈71〉. Although Venus rotation is ret-
rograde, its period 243.025 days approximates the attractor
Fp〈72; 2〉 that coincides with Fe〈65〉. The rotation of further
planets, planetoids and moons of the solar system we have
analyzed in [15].
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Conclusion

The application of our numeric-physical approach to the anal-
ysis of the orbital and rotational periods of the planets, plan-
etoids and moons of the solar system and thousands of exo-
planets [15] leads us to the conclusion that the avoidance of
orbital, rotational, proton and electron parametric resonances
by approximation of transcendental ratios can be viewed as a
basic forming factor of planetary systems.

Studies of circumstellar disks around young stars con-
clude [34] that the planet formation process is observation-
ally required to be both fast and common. Solid planets in
the solar system should have then formed within less than a
few million years, which is a major challenge for terrestrial
planet formation theories [35].

Perhaps, our approach can explain the fast consolidation
of the solar system. In fact, the scale-invariant fractal distri-
bution of transcendental Euler attractors of stability is an in-
herent feature of the number continuum and therefore given a
priori and does not require a long history of random collisions
to find them.

The circumstance that the gravitational parameters of the
Sun and the planets approximate main numeric attractors of
electron and proton stability could be an approach to achieve
a deeper understanding of gravitation.

In modern theoretical physics, numerical ratios usually
remain outside the realm of theoretical interest. In this work
we have tried to elucidate the physical meaning of numerical
ratios and to show their theoretical and practical importance.
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