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In systems of coupled periodic processes, lasting frequency ratios can cause significant
physical effects, which depend on the type of real numbers the ratios are approximating.
Rational frequency ratios can cause parametric resonance and amplification, while ap-
proaching irrational frequency ratios can avoid them. In this paper we discuss physical
effects that can be caused by frequency ratios approximating some irrational algebraic
and transcendental numbers. We illustrate this approach on some features of the solar
system which are still unexplained.

Introduction

In this paper, we introduce an approach that bases on the
physical interpretation of certain statements of the number
theory. In modern theoretical physics, numerical ratios usu-
ally remain outside the realm of theoretical interest. In this
work we try to elucidate the physical meaning of numerical
ratios and to show their theoretical and practical importance
for resolving some fundamental problems of physics.

One of the unsolved fundamental problems in physics [1]
is the stability of systems of a large number of coupled pe-
riodic processes, for instance, the stability of planetary sys-
tems. If numerous bodies are considered to be gravitationally
bound to one another, perturbation models predict long-term
highly unstable states [2] that contradict the physical reality
of the solar system and thousands of exoplanetary systems.

In our previous publications we have applied our numeric-
physical approach to the analysis of the orbital and rotational
periods of the planets, planetoids and moons of the solar sys-
tem and thousands of exoplanets [3] with the conclusion that
the avoidance of orbital and rotational parametric resonances
by approximation of transcendental ratios can be viewed as a
basic forming factor of planetary systems [4].

Another unsolved fundamental problem is the imperisha-
bility of motion and interaction, and the inexhaustibility of
energy. This question seems to be out of the realms of mod-
ern physics. Indeed, until now, all the sources of energy we
are currently using – from electricity to radioactivity – were
discovered by chance. This fact and the incapacity of invent-
ing new energy sources evidences the lack of comprehention.
For instance, the research of the predicted thermonuclear fu-
sion has been going on for 60 years without success [5, 6].

Likewise, the nature of gravitational energy is still a mys-
tery [7]. For instance, what is the propelling force of the or-
bital motion? Naturally, there is no propelling of orbital mo-
tion, the planets are in perpetual free fall. However, the orbital
velocity of a planet is very high, 30 kilometers per second in
the case of the Earth. The impulse of a planet is therefore
enormous and sweeps away everything that gets in its trajec-
tory. Where does this kinetic energy come from? Perhaps,

this question seems naive to the physicist who is ready to an-
swer immediately: Besides the primordial kinetic energy of
the protoplanetary disk, the potential energy of the gravity
field of the star is the source of the kinetic energy of plane-
tary motion. However, this answer only readdresses the ques-
tion. Then what is the source of gravitational energy? Is it
the alleged ability of a mass to curve space-time? Then what
causes this ability?

Obviously, the concept of mass is not complete since the
numerical values of particle masses still remain a mystery.
Where do the observed masses of elementary particles come
from? This is the biggest, and oldest, unresolved enigma in
fundamental particle physics. There is the widespread, but
erroneous, belief that the Higgs boson resolves the origin of
particle masses. This is not the case. It merely replaces one
set of unknown parameters (particle rest energies) with an
equally unknown set of parameters (coupling constants to the
Higgs field), so nothing is gained in the fundamental under-
standing of masses [8].

Is there a hidden inexhaustible source of energy in the uni-
verse? Then why can energy not be generated or consumed,
but only converted?

The earliest constants of motion discovered were momen-
tum and kinetic energy, which were proposed in the 17th cen-
tury by René Descartes and Gottfried Leibniz on the basis of
collision experiments, and later refined by Euler, Lagrange,
d’Alembert and Hamilton. In theoretical physics, Noether’s
first theorem connects the conservation of energy with the ho-
mogeneity of time, supposing that the laws of physics do not
change over time. Noether’s theorem states that conservation
laws apply in a physical system with conservative forces. A
conservative force is a force with the property that the total
work done in moving a particle between two points is inde-
pendent of the path taken. Equivalently, if a particle travels in
a closed loop, the total work done by a conservative force is
zero. In short, a conservative force is a force that conserves
energy. Hence, Noether’s theorem leads to circular reasoning.
It does not explain the cause of energy conservation [9]. Per-
haps, no physical principle can explain the origin of energy,
because every physical process presupposes the existence of
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another physical process that serves as its energy source. This
non ending chain of energy converters suggests that the im-
perishability of motion and interaction, and the inexhaustibil-
ity of energy must have a non-physical cause.

Our numeric-physical approach leads us to the conclusion
that motion and interaction, including energy as well as other
constants of motion are caused by attractors of numeric fields.
We illustrate this conclusion on some features of the solar
system which are still unexplained.

Theoretical Approach

The starting point of our approach is frequency as obliga-
tory characteristic of a periodic process. As the result of a
measurement is always a ratio of physical quantities, one can
measure only ratios of frequencies. This ratio is always a real
number. Being a real value, a frequency ratio can approxi-
mate an integer, rational, irrational algebraic or transcenden-
tal number. In [10] we have shown that the difference be-
tween rational, irrational algebraic and transcendental num-
bers is not only a mathematical task, but it is also an essen-
tial aspect of stability in systems of bound periodic processes.
For instance, integer frequency ratios, in particular fractions
of small integers, make possible parametric resonance that
can destabilize such a system [11, 12]. This is why asteroids
cannot maintain orbits that are unstable because of their reso-
nance with Jupiter [13]. These orbits form the Kirkwood gaps
that are areas in the asteroid belt where asteroids are absent.

According to this idea, irrational ratios should not cause
destabilizing resonance interactions, because irrational num-
bers cannot be represented as a ratio of integers. However, al-
gebraic irrational numbers, being real roots of algebraic equa-
tions, can be converted to rational numbers by multiplica-
tion. For example, the algebraic irrational number

√
2 =

1.41421 . . . cannot become a frequency scaling factor in real
systems of coupled periodic processes, because

√
2 ·
√

2 = 2
creates the conditions for the occurrence of parametric reso-
nance. Thus, only transcendental ratios can prevent paramet-
ric resonance, because they cannot be converted to rational
or integer numbers by multiplication. Actually, it is tran-
scendental numbers, that define the preferred frequency ra-
tios which allow to avoid destabilizing resonance [14]. In this
way, transcendental frequency ratios sustain the lasting stabil-
ity of coupled periodic processes. With reference to the evo-
lution of a planetary system and its stability, we may therefore
expect that the ratio of any two orbital periods should finally
approximate a transcendental number [15].

However, the issue is to clarify the type of number a mea-
sured ratio corresponds to. Because of the finite resolution of
any measurement, there is no possibility to know it for sure.
The obtained value is always an approximation and therefore,
it is very important to know the amount of its uncertainty.

It is remarkable that approximation interconnects all types
of real numbers – rational, irrational algebraic and transcen-

dental. In 1950, Aleksandr Khinchin [16] made a very impor-
tant discovery: He could demonstrate that simple continued
fractions deliver biunique representations of all real numbers,
rational and irrational. Whereas infinite continued fractions
represent irrational numbers, finite continued fractions rep-
resent always rational numbers. In this way, any irrational
number can be approximated by finite continued fractions,
which are the convergents and deliver always its nearest and
quickest rational approximation.

It is notable that the best rational approximation of an ir-
rational number by a finite continued fraction is not a task
of computation, but only an act of termination of the con-
tinued fraction recursion. For example, the golden ratio φ =

(
√

5+1)/2 = 1.618. . . has a biunique representation as simple
continued fraction that contains only the number 1:

φ = 1 +
1

1 +
1

1 +
1

1 + . . .

As the continued fraction of φ is periodic, it meets a quadratic
equation evidencing that φ is algebraic:

φ = 1 +
1
φ

φ2 − φ − 1 = 0

In order to save space, in the following we use angle brackets
to write down continued fractions, for example the golden ra-
tio φ = 〈1; 1, 1, . . . 〉. So long as the sequence of denominators
is considered as infinite, this continued fraction represents the
irrational number φ. If the continued fraction will be trun-
cated, the sequence of denominators will be finite and we get
a convergent that is always the nearest rational approximation
of the irrational number φ.

In the case of φ, the approximation process is very slow
because of the small denominators. Only the 10th approxima-
tion gives the correct third decimal of φ. In fact, the denomi-
nators in the continued fraction of φ are the smallest possible
and consequently, the approximation speed is the lowest pos-
sible. The golden ratio φ is therefore treated as the ‘most
irrational’ number in the sense that a good approximation of
φ by rational numbers cannot be given with small quotients.
On the contrary, transcendental numbers can be approximated
exceptionally well by rational numbers, because their contin-
ued fractions contain large denominators and can be truncated
with minimum loss of precision. For instance, the simple con-
tinued fraction of Archimedes’ number π = 3.1415927 . . . =

〈3; 7, 15, 1, 292, . . . 〉 delivers the following sequence of ratio-
nal approximations:

〈3〉 = 3
〈3; 7〉 = 22/7 = 3.142857
〈3; 7, 15〉 = 3.14150943396226
〈3; 7, 15, 1〉 = 3.1415929 . . .
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Already the 2nd approximation delivers the first two decimals
correctly. Therefore, 22/7 is a widely used Diophantine ap-
proximation of π. The 4th approximation shows already six
correct decimals. This special arithmetic property of contin-
ued fractions [17] of transcendental numbers has the conse-
quence that transcendental numbers are distributed near by ra-
tional numbers of small quotients or close to integers, like e3

= 20.08. . . or π3 = 31.006. . . . This can create the impression
that complex systems like the solar system provide ratios of
physical quantities that approximate rational numbers. More
likely, they approximate transcendental numbers [4], which
are located close to rational numbers.

Naturally, a continued fraction of π or any other real tran-
scendental number cannot be periodic, otherwise it would
meet an algebraic equation. For example, the continued frac-
tions of the algebraic irrationals

√
2 = 〈1; 2, 2, 2, . . . 〉 and√

3 = 〈1; 1, 2, 1, 2, . . . 〉 are periodic. In contrast to them, a
generalized continued fraction of Euler’s number contains all
natural numbers in sequence as numerators and denominators
and therefore, it cannot be periodic:

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + . . .

The following generalized continued fraction [18] of π con-
tains all natural numbers factorizing the numerators:

π = 2 +
2

1 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 + . . .

These continued fractions do not only evidence that π and e
are not algebraic, but make comprehensible the increase of
the approximation speed with every next convergent. In ad-
dition, it becomes clear that Archimedes’ number π can be
approximated faster than Euler’s number e.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows avoiding parametric resonance between any
coupled periodic processes including their derivatives.

Because of this unique property of Euler’s number, we ex-
pect that periodic processes in real systems prefer frequency
ratios close to Euler’s number and its roots. The natural loga-
rithms of those frequency ratios are therefore close to integer
0,±1,±2, . . . or rational ±1/2,±1/3,±1/4, . . . values. For
rational exponents, the natural exponential function is always
transcendental [19]. Since every rational number has a biu-
nique representation as a simple finite continued fraction, we

can represent the logarithms of the frequency ratios we are
looking for as finite continued fractions:

ln (ωA/ωB) = F = 〈n0; n1, n2, . . . , nk〉 (1)

ωA and ωB are the angular frequencies of two bound peri-
odic processes A and B avoiding parametric resonance. We
use angle brackets for continued fractions. All denominators
n1, n2, . . . , nk of a continued fraction including the free link
n0 are integer numbers. All numerators equal 1. The length
of a continued fraction is given by the number k of layers.

The canonical form (all numerators equal 1) does not limit
our conclusions, because any continued fraction with partial
numerators different from 1 can be transformed into a canon-
ical continued fraction using the Euler equivalent transforma-
tion [20]. Therefore, finite canonical continued fractions rep-
resent all rational numbers in the sense that there is no rational
number that cannot be represented as a finite canonical con-
tinued fraction. This universality of canonical continued frac-
tions evidences that the distribution of rational logarithms (1)
is fractal. As it is an inherent feature of the number contin-
uum, we call it the Fundamental Fractal [14].

The first layer of this fractal is given by the truncated after
n1 continued fractions:

〈n0; n1〉 = n0 +
1
n1

The denominators n1 follow the sequence of integer numbers
±1, ±2, ±3 etc. The second layer is given by the truncated
after n2 continued fractions:

〈n0; n1, n2〉 = n0 +
1

n1 +
1
n2

Figure 1 shows the first and the second layer in comparison.
As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . . are
the attractor points of the fractal. In these points, the distri-
bution density of rational logarithms (1) reaches a local max-
imum. Integers 0,±1,±2, . . . define the main attractors hav-
ing the widest ranges. Half logarithms ±1/2 form smaller
attractor ranges, third logarithms ±1/3 form the next smaller
ranges and so forth. Increasing the length of the continued
fraction (1), the distribution density of the transcendental fre-
quency ratiosωA/ωB is increasing as well. Nevertheless, their
distribution is not homogeneous, but fractal. Applying con-
tinued fractions and truncating them, we can represent the
logarithms ln (ωA/ωB) as rational numbers 〈n0; n1, n2, . . . , nk〉

and make visible their fractal distribution.
The linear projection E = exp (F ) of the fundamental

fractal (fig. 1) is a fractal scalar field of transcendental at-
tractors that we call the Euler field [3]. Figure 2 (central
part) shows the 2D-projection of its first layer. The Euler
field is topologically 3-dimensional, a fractal set of embedded
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Fig. 1: The distribution of rational logarithms for k = 1 (above) and
for k = 2 (below) in the range -16F 6 1.

spheric equipotential surfaces. The potential difference de-
fines a gradient directed to the center of the field that causes a
central force of attraction creating the effect of a field source.
Because of the fractal logarithmic hyperbolic metric of the
field, also every equipotential surface is an attractor. The log-
arithmic scalar potential difference ∆F of sequent equipoten-
tial surfaces equals the difference of sequent continued frac-
tions (1) on a given layer:

∆F = 〈n0; n1, . . . , nk〉 − 〈n0; n1, . . . , nk + 1〉

Main equipotential surfaces at k = 0 correspond with inte-
ger logarithms; equipotential surfaces at deeper layers k > 0
correspond with rational logarithms.

The Euler field is of pure arithmetic origin, and there is
no particular physical mechanism required as field source.
Hence, we postulate the universality of the Euler field that
should affect any type of physical interaction, regardless of its
complexity. Corresponding with (1), the Euler field generates
a fractal set of transcendental frequency ratios ωA/ωB = E

which allow to avoid destabilizing parametric resonance and
in this way, provide the lasting stability of periodic processes
bound in systems regardless of their complexity. This con-
clusion we have exemplified [21] in particle physics, astro-
physics, geophysics, biophysics and engineering.

In several publications we have shown that the Euler field
determines the orbital periods of thousands of exoplanets and
large bodies in the solar system [3] as well as their gravi-
tational parameters [4]. Astrophysical and geophysical cy-
cles [22] as well as periodic biophysical processes [10] obey
the Euler field. Finally, the Euler field determines the proton-
to-electron ratio and the W/Z-to-electron ratio as well as the
temperature 2.725 K of the cosmic microwave background ra-
diation [14]. All these findings suggest that the cosmological
significance of the Euler field is that of a universal stabilizer.

The radii of the equipotential surfaces of the Euler field
E = eF are integer and rational powers of Euler’s number.
However, not only Euler’s number e = 2.71828 . . . defines
a fractal scalar field of its integer and rational powers, but
in general, every prime, irrational and transcendental number
does it. While the fundamental fractal (fig. 1) is always the
same distribution of rational logarithms, the structure of the
corresponding fundamental field changes with the logarith-
mic base. Here it is important to notice that no fundamental
field can be transformed in another by scaling (stretching),
because loga(x) – logb(x) is a nonlinear function of x. In this
way, every prime, irrational or transcendental number gener-
ates a unique fundamental field of its own integer and ratio-
nal powers that causes physical effects which are typical for

that number. For instance, the golden ratio φ = 〈1; 1, 1, . . . 〉
makes difficult its rational approximation, since its continued
fraction does not contain large denominators. Hence, the fun-
damental field of its integer and rational powers should be a
perfect inhibitor of resonance amplification. We propose to
name this field after Hippasus of Metapontum who was an
ancient Greek philosopher and early follower of Pythagoras,
and is widely credited with the discovery of the existence of
irrational numbers, and the first proof of the irrationality of
the golden ratio. Figure 2 (left part) shows the 2D-projection
of the first layer of the Hippasus fieldH = φF .

Although the golden ratio is irrational, it is a Pisot num-
ber, so its powers are getting closer and closer to whole num-
bers. This is why the Hippasus field can inhibit resonance
within small frequency ranges only. Euler’s number is not
a Pisot number, so that the Euler field permits coupled peri-
odic processes to avoid parametric resonance also over very
large frequency ranges. Since the natural logarithm of the
golden ratio is close to 1/2, small powers of the golden ra-
tio can approximate main equipotential surfaces of the Euler
field. For example, φ2 = 2.618 . . . can serve as approximation
of e = 2.718 . . . Within small frequency ranges, this circum-
stance makes the Hippasus field a fast and simplified local
approximation of the Euler field. In fact, as the continued
fraction of the golden ratio contains only the number 1, ap-
proximations of the golden ratio can be achieved faster than
approximations of Euler’s number, since every extension of
its continued fraction requires counting and additional com-
puting. Therefore, systems of coupled periodic processes fol-
low the Hippasus field within small frequency ranges only.
For example, several authors [23, 24] have suggested that the
Venus-to-Earth orbital period ratio 0.615 approximates the
golden ratio 1/φ = 0.618 . . . preventing Earth and Venus from
parametric orbital resonance. However, the Hippasus field
cannot prevent the whole solar system from orbital resonance.
For instance, the Pluto-to-Venus orbital period ratio does not
obey a power of the golden ratio, but approximates the 6th

power of Euler’s number [10]. The 6th power of Euler’s num-
ber is in the range of the 12th power of the golden ratio that
approximates a whole number and hence cannot serve as a
scaling factor that prevents parametric resonance.

Obviously, in systems with many coupled periodic pro-
cesses, the Hippasus field can produce two opposing effects:
over small frequency ranges, the Hippasus field can inhibit
parametric resonance, but over large frequency ranges, it pro-
vides the long-period appearance of resonance amplification.

Furthermore in this paper, we introduce the Archimedes
field A = πF . Figure 2 (right part) shows the 2D-projection
of its first layer. The radii of the equipotential surfaces of the
Archimedes field are integer and rational powers of π.

According to our numeric physical approach, we inter-
pret the fact that circumference / radius = π in the way that
the transcendence of π makes possible circular motion. The
transcendence of the circumference avoids interruptions and
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makes impossible to define the start or endpoint of motion.
Furthermore, Archimedes number π makes possible eternal
oscillation. This is why it is impossible to completely stop
oscillations, for example, the thermal oscillations of atoms.
According to our approach, the origin of the zero point en-
ergy phenomenon lies in the transcendence of π.

Proven by Theodor Schneider [25] in 1937, the perimeter
of an ellipse is transcendental. Elliptical or circular motion
is the only way to move with acceleration without propul-
sion. The absence of propulsion makes this motion eternal.
In this way, the transcendence of π makes possible eternal ac-
celerated motion. Hence, Archimedes’ number appears to be
a universal source of kinetic energy and promoter of orbital
and rotational motion.

In the framework of our approach, gravity is a physical
effect caused by numeric attractors [3]. They cause mass ac-
cretion forming a celestial body and determine its movement
in space and time. In this way, planets, stars, planetary sys-
tems and galaxies are materializations of numeric attractors.
These attractors exist long before a star or planet is formed.
In order to reach an attractor, the accelerated displacement of
matter causes the force conventionally interpreted as gravity.
Numeric attractors are primary; mass accretion is secondary.
In this way, gravitation is not caused by the body mass, and it
is not a physical property of a celestial body at all. We sup-
pose that fundamental numeric attractors cause all types of
physical interaction.

As well, the appearance of a field source is only a scal-
ing effect. A field is not created by a charge, but the charge
is a scaling effect of the field. The gradient of the field is
the force of attraction that indicates the location of the en-
ergy source. The attractor is the energy source. Matter falls
down to the attractor because in this way it gains energy. This
is why the core of a planet is hot. On the contrary, in the
assumption that mass is the source of gravity, and in accor-
dance with Newton’s shell theorem, the Preliminary Refer-
ence Earth Model [26] affirms the decrease of the gravity ac-
celeration with the depth. However, this hypothesis is still
under discussion. In 1981, Stacey and Holding [27, 28] re-
ported anomalous measures (larger values than expected) of
the gravity acceleration in deep mines and boreholes.

According to our approach, the acceleration of free fall
should increase with the vicinity to the field singularity, but
follow the logarithmically hyperbolic fractal metric of the
fundamental numeric field. In [29] we have shown that the
Euler field reproduces the 3D profile of the Earth’s interior
confirmed by seismic exploration. As well, the stratification
layers in planetary atmospheres follow the Euler field [30].

Are there attractors of the Euler field that coincide with
attractors of the Archimedes field? Since e = 2.71828 . . .
and π = 3.14159 . . . are transcendental, there are no ratio-
nal powers of these numbers that can produce identical re-
sults. Therefore, in general, Archimedes-attractors are differ-
ent from Euler-attractors. However, some of them are so close

to each other that they form common attractors. It is not diffi-
cult to compute the exponents of two transcendental numbers
that define a common attractor. The ratio of their logarithms
is a fractal dimension that equals D = ln π = 1.144729 . . .
Representing D as continued fraction 〈1; 7,−11, . . .〉, we im-
mediately find 8/7 as the first approximation. Consequently,
multiples of 8/7 define pairs of Euler-attractors of stability
and Archimedes-attractors of motion that are very close to
each other. For example, this is valid for E〈56〉 and A〈49〉.
We will study this and other examples in the paragraph Ex-
emplary Applications. Naturally, our description of possible
physical effects caused by the fields A,E,H does not claim
to be complete.

Exemplary Applications

Let us start with an application of the Euler field that demon-
strates its ability of avoiding parametric resonance over ex-
tremely large scale-differences. For instance, Venus’ distance
from Sun approximates the main equipotential surface Ee〈54〉
of the Euler field of the electron that equals the 54th power of
Euler’s number multiplied by the Compton wavelength of the
electron λe. The aphelion 0.728213 AU = 1.08939 · 1011 m
delivers the upper approximation:

ln
(

AO(Venus)
λe

)
= ln

(
1.08939 · 1011 m
3.86159 · 10−13 m

)
= 54.00

The perihelion 0.718440 AU = 1.07477 · 1011 m delivers the
lower approximation:

ln
(

PO(Venus)
λe

)
= ln

(
1.07477 · 1011 m
3.86159 · 10−13 m

)
= 53.98

This means that Venus’ orbit derives from the Euler field of
the electron. In other words, Venus’ orbit is of subatomic
origin. This is not a random coincidence. Jupiter’s distance
from Sun approximates the main equipotential surface Ee〈56〉
of the same electron Euler field. The aphelion 5.45492 AU =

8.160444 · 1011 m delivers the upper approximation:

ln
(

AO(Jupiter)
λe

)
= 56.01

The perihelion 4.95029 AU = 7.405528 · 1011 m delivers the
lower approximation:

ln
(

PO(Jupiter)
λe

)
= 55.91

As well, Jupiter’s orbital period 4332.59 days derives from
the Euler field of the electron. In fact, it equals the 66th power
of Euler’s number multiplied by the oscillation period of the
electron (τe = λe/c = 1.28809 · 10−21 s is the angular oscilla-
tion period of the electron):

ln
(

TO(Jupiter)
2π · τe

)
= ln

(
4332.59 · 86400 s

2π · 1.28809 · 10−21 s

)
= 66.00
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Fig. 2: The image shows the 2D-projection of the first layer (k = 1) of equipotential surfaces of the Hippasos FieldH = φF (left), the Euler
Field E = eF (center), and the Archimedes FieldA = πF (right) of the Fundamental Fractal F . The fields are shown to the same scale.

The same is valid for the orbital period 686.98 days (1.88
years) of the planet Mars that equals the 66th power of Euler’s
number multiplied by the angular oscillation period of the
electron:

ln
(

TO(Mars)
τe

)
= ln

(
686.98 · 86400 s
1.28809 · 10−21 s

)
= 66.00

Consequently, the ratio of the orbital periods of Jupiter and
Mars equals 2π:

TO(Jupiter) = 2π · TO(Mars)

This transcendental ratio allows Mars to avoid parametric or-
bital resonance with Jupiter and evidences that Jupiter and
Mars are not planets of different systems, but bound together
in the same conservative system (the solar system).

Also the orbital period 224.701 days of Venus derives
from the Euler field of the electron, and it is stabilized by
the main attractor Ee〈63〉:

ln
(

TO(Venus)
2π · τe

)
= 63.00

The complete (polar) rotational period TR(S un) = 34 days of
the Sun approximates the same attractor:

ln
(

TR(S un)
τe

)
= 63.00

Consequently, the scaling factor 2π connects the orbital pe-
riod of Venus with the rotational period of the Sun:

TO(Venus) = 2π · TR(S un)

Needless to say that these numeric relations cannot be derived
from Kepler’s laws or Newton’s law of gravitation. Fig. 3
shows how Archimedes’ number bonds together rotational
and orbital periods. The scale symmetry of this connection
not only reveals the Sun as the engine of planetary motion,
but also the special role of Mercury. The connection of its
rotation with the orbital motion of the Earth is surprising and
encourages further investigation.

In general, orbital periods are stabilized by the Euler field
of the electron, and rotational periods by the Euler field of the
proton. For instance, the rotational periods of Earth and Mars
derive from the angular oscillation period τp = λp/c of the
proton (λp = 2.10309 · 10−16 m is the Compton wavelenght
of the proton). They approximate the same attractor Ep〈67〉.
Mars’ sidereal rotational period 24.62278 hours delivers the
upper approximation:

ln
(

TR(Mars)
τp

)
= ln

(
24.62278 · 3600 s
7.01515 · 10−25 s

)
= 67.01

Earth’ sidereal rotational period 23.93447 hours delivers the
lower approximation:

ln
(

TR(Earth)
τp

)
= ln

(
23.93447 · 3600 s
7.01515 · 10−25 s

)
= 66.98

It is notable that the proton-to-electron ratio itself approxi-
mates the 7th power of Euler’s number and its square root:

ln
(
λe

λp

)
= ln

(
3.86159 · 10−13 m
2.10309 · 10−16 m

)
' 7 +

1
2

= E〈7; 2〉

In the consequence of this potential difference of the proton
relative to the electron, the scaling factor

√
e = 1.64872. . .

connects Euler field attractors of proton stability with similar
attractors of electron stability in alternating sequence. In [4]
we have applied Khinchine’s [16] continued fraction method
of approximation to the proton-to-electron ratio.

As we mentioned in the paragraph Theoretical Approach,
multiples of 8/7 define pairs of Euler-attractors of stability
and Archimedes-attractors of motion and energy that are very
close to each other. For example, this is valid for Ee〈56〉 and
Ae〈49〉, because 56/49 = 8/7. This coincidence underlines
the significance of the attractor Ee〈56〉 that determines the
orbit of the largest planet in the Solar system. If we apply
the exponent 49 to Euler’s number, we discover that Ee〈49〉
corresponds with the radius of the Sun. In this way, the co-
incidence of Ee〈56〉 withAe〈49〉 identifies the Sun as energy
source and Jupiter as main orbital body of the Solar system.
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Fig. 3: From left to right: the rotational periods of the Sun (S) and
Mercury (M), and the orbital periods of Venus (V), Earth (E), Mars
(M), Ceres (C), Jupiter (J), and Saturn (S), coupled by the scaling
factor 2π of the Archimedes field.

Interestingly, it is not the radius of the photosphere that coin-
cides with the equipotential surface Ee〈49〉, but the radius of
the corona. It is noticeable that no complete theory yet exists
to account for the extremely high temperature of the corona
that reaches up to 20 million Kelvin. Despite great advances
in observations and modelling, the problem of solar and stel-
lar heating still remains one of the most challenging problems
of space physics [31]. According to our approach, this heat-
ing could be a physical effect caused by numeric attractors of
the Archimedes field.

Conclusion

According to our numeric-physical approach, numeric fields
like A,E are primary. Through their physical effects, they
not only determine the frequency ratios of elementary parti-
cles, but also the setting of orbital and rotational periods in
planetary systems. Modern theoretical physics is oriented to-
wards equations, even if they cannot be solved. The language
of equations is based on conservation rules, which, however,
describe the behavior of model processes under certain ideal
conditions of equilibrium. Nevertheless, the search for an
equation describing the observed process is often considered
a priority task of theoretical research. In this case, as a rule,
numerical ratios are considered random. We consider this
work to contribute to the idea that great unification in physics
cannot be achieved as long as numerical ratios remain outside
the realm of theoretical interest.
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