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The paper presents a fractal scaling model of a chain system of quantum harmonic
oscillators, that reproduces some systematic features in the mass distribution of hadrons,
leptons and gauge bosons.

1 Introduction

The origin of particle masses is one of the most important un-
solved problems of modern physics. Also the discrete char-
acter of the distribution of particle masses is untreated. In this
paper we won ’t discuss the current situation in the standard
theory. Based on a fractal scaling model [1] of natural oscil-
lations in chain systems of harmonic quantum oscillators we
will analyze the distributions of particles in dependence on
their masses to find out systematic features.

Fractal scaling models [2] of natural oscillations are not
based on any statements about the nature of the link or in-
teraction between the elements of the oscillating chain sys-
tem. Therefore the model statements are quite generally, what
opens a wide field of possible applications. Logarithmic scal-
ing is a well known property of inclusive distributions in high
energy particle reactions [3]. The quantity of secondary parti-
cles increases in dependence on the logarithm of the collision
energy.

In the framework of the standard theory, the electron is
stable because it ’s the least massive particle with non-zero
electric charge. Its decay would violate charge conservation.
The proton is stable, because it ’s the lightest baryon and the
baryon number is conserved. Therefore the proton is the most
important baryon, while the electron is the most important
lepton and the proton-to-electron mass ratio can be under-
stood as a fundamental physical constant. In the framework
of the standard theory, the W- and Z-bosons are elementary
particles that mediate the weak force. The rest masses of all
theses particles are measured with high precision. The masses
of other elementary or stable particles (quarks, neutrinos) are
unknown.

In the framework of our model [1], particles are resonance
states in chain systems of harmonic quantum oscillators and
the masses of fundamental particles are connected by the scal-
ing exponent 3

2 . For example, the proton-to-electron mass ra-
tio is 7 1

2 , but the W-boson-to-proton mass ratio is 4 1
2 . This

means, they are connected by the equation:
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− 3 . (1)

Therefore the W-boson-to-electron mass ratio corresponds
to 4 1

2 + 7 1
2 = 12:
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me

)
= 12. (2)

Already within the eighties the scaling exponent 3
2 was

found in the distribution of particle masses by Valery A.
Kolombet [4]. In addition, we have shown [2] that the masses
of the most massive celestial bodies in the Solar System are
connected by the same scaling exponent 3

2 . The scaling expo-
nent 3

2 arises as consequence of natural oscillations in chain
systems of similar harmonic oscillators [1]. If the natural fre-
quency of one harmonic oscillator is known, one can calculate
the complete fractal spectrum of natural frequencies of the
chain system, in which spectral nodes arise on the distance of
1 and 1

2 logarithmic units.
Near spectral nodes the spectral density reaches local

maximum and natural frequencies are distributed maximum
densely. The energy efficiency of natural oscillations is very
high. Therefore one can expect that spectral nodes represent
states of the oscillating chain system, which have the highest
degree of effectiveness. For this reason we suspect, that stable
particles correspond to main spectral nodes.

2 Methods

Based on the continued fraction method [5] we will search
the natural frequencies of a chain system of many similar har-
monic oscillators in this form:

f jk = f00 exp
(
Sjk

)
. (3)

f jk is a set of natural frequencies of a chain system of similar
harmonic oscillators, f00 is the natural oscillation frequency
of one oscillator, S jk is a set of finite continued fractions with
integer elements:

S jk = nj0 +
1

nj1+
1

nj2 + . . . + 1
njk

= [nj0; nj1, nj2, . . . , njk] , (4)

where nj0, nj1, nj2, . . ., njk ∈ Z, j = 0 , ∞. We investigate con-
tinued fractions (4) with a finite quantity of layers k, which
generate discrete spectra, because in this case all S jk represent
rational numbers. Therefore the free links nj0 and the partial
denominators nj1, nj2, . . ., njk can be interpreted as “quantum
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Particle Rest mass m, MeV/c2 [6] ln (m/m00) S d

electron (m00) 0.510998910 ± 0.000000013 0 [0] 0.000
proton 938.27203 ± 0.00008 7.515 [7; 2] 0.015
neutron 939.565346 ± 0.000023 7.517 [7; 2] 0.017
W-boson 80398 ± 25 11, 966 [12] −0.034
Z-boson 91187.6 ± 2.1 12.092 [12] 0,092

Table 1: The rest masses of well measured stable and fundamental particles and the S-values (4) of the nearest main spectral nodes for the
electron calibrated model spectrum. The deviation d = (ln (m/m00) − S ) is indicated.

numbers”. The present paper follows the Terskich [5] defi-
nition of a chain system, where the interaction between the
elements proceeds only in their movement direction. Model
spectra (4) are not only logarithmic-invariant, but also frac-
tal, because the discrete hyperbolic distribution of natural fre-
quencies f jk repeats itself on each spectral layer. The partial
denominators run through positive and negative integer val-
ues. Ranges of relative low spectral density (spectral gaps)
and ranges of relative high spectral density (spectral nodes)
arise on each spectral layer. In addition to the first spec-
tral layer, Fig. 1 shows the second spectral layer k = 2 with
|nj1|= 2 (logarithmic representation). Maximum spectral den-
sity areas (spectral nodes) arise automatically on the distance
of integer and half logarithmic units.

Fig. 1: The spectrum (4) on the first layer k = 1, for |nj0|= 0, 1 2, . . .
and |nj1|= 2, 3, 4, . . . and, in addition, the second spectral layer k = 2,
with |nj1|= 2 and |nj2|= 2, 3, 4, . . . (logarithmic representation).

Fractal scaling models of natural oscillations are not
based on any statements about the nature of the link or inter-
action between the elements of the oscillating chain system.
For this reason we assume that our model could be useful
also for the analysis of natural oscillations in chain systems
of harmonic quantum oscillators. We assume that in the case
of natural oscillations the amplitudes are low, the oscillations
are harmonic and the oscillation energy E depends only on
the frequency (h is the Planck constant):

E = h f . (5)

In the framework of our model (3) all particles are reso-
nances, in which to the oscillation energy (5) corresponds the
particle mass m:

m = f
h
c2 . (6)

In this connection the equation (6) means that quantum
oscillations generate mass. Under consideration of (3) now
we can create a fractal scaling model of the mass spectrum of
model particles. This mass spectrum is described by the same
continued fraction (4), for m00 = f00

h
c2 :

ln
(

m jk

m00

)
= [nj0; nj1, nj2, . . . , njk] . (7)

The frequency spectrum (4) and the mass spectrum (7)
are isomorphic. The mass spectrum (7) is fractal and con-
sequently it has a clear hierarchical structure, in which con-
tinued fractions (4) of the form [nj0] and [nj0; 2] define main
spectral nodes, as Fig. 1 shows.

3 Results

In the present paper we will compare the scaling model mass
spectrum (7) in the range of 100 KeV/c2 to 100 GeV/c2 with
the mass distribution of well-known particles — hadrons, lep-
tons and gauge bosons.

The model mass spectrum (7) is logarithmically symmet-
rical and the main spectral nodes arise on the distance of 1
and 1

2 logarithmic units, as fig. 1 shows. The mass m00 in
(7) corresponds to the main spectral node S00 = [0], because
ln (m00/m00) = 0. Let’s assume that m00 is the electron rest
mass 0.510998910(13) MeV/c2 [6]. In this case (7) describes
the mass spectrum that corresponds to the natural frequency
spectrum (4) of a chain system of vibrating electrons. Further
stable or fundamental model particles correspond to further
main spectral nodes of the form [nj0] and [nj0; 2]. Actually,
near the node [12] we find the W- and Z-bosons, but near the
node [7; 2] the proton and neutron masses, as Table 1 shows.

Theoretically, a chain system of vibrating protons gener-
ates the same spectrum (7). Also in this case, stable or fun-
damental model particles correspond to main spectral nodes
of the form [nj0] and [nj0; 2], but relative to the electron cal-
ibrated spectrum, they are moved by −7 1

2 logarithmic units.
Actually, if m00 is the proton rest mass 938.27203(8) MeV/c2

[6], then the electron corresponds to the node [−7;−2], but
the W- and Z-bosons correspond to node [4; 2].

Consequently, the core claims of our model don’t depend
on the selection of the calibration mass m00, if it is the rest
mass of a fundamental resonance state that corresponds to a
main spectral node. As mentioned already, this is why the
model spectrum (7) is logarithmically symmetrical.

Because a chain system of any similar harmonic oscilla-
tors generates the spectrum (7), m00 can be much more
smaller than the electron mass. Only one condition has to
be fulfilled: m00 has to correspond to a main spectral node
of the model spectrum (7). On this background all particles
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Fig. 2: This histogram was built based on Table 2 and shows the
distribution of baryons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

Fig. 3: This histogram was built based on Table 3 and shows the
distribution of mesons (grey bars) and leptons (white bars) over 1

4
logarithmic units wide S-intervals in the range of the electron mass
(S = 0, white bar) to the W- and Z-bosons (S = 12, black bar).

can be interpreted as resonance states in a chain system of
harmonic quantum oscillators, in which the rest mass of each
single oscillator goes to zero. In the framework of our os-
cillation model this way can be understood the transition of
massless to massive states.

In our model massive particles don’t arise because of a
symmetry violation. Massive particles arise as resonance
states and their mass distribution is logarithmically symmetric.

Further we will investigate the distribution of hadrons
(baryons and mesons) in dependence on their rest masses. For
this we will split up the mass spectrum (7) into equal in size
logarithmic intervals and build histograms. To separate clear
the main spectral nodes [nj0] and [nj0; 2], we have to split up
the spectrum (7) into S-intervals of 1

4 logarithmic units.
Table 2 shows the measured masses of baryons, the cal-

culated S-intervals of 1
4 logarithmic units width and the cor-

responding calculated mass-intervals. Based on Table 2 a
histogram was built (Fig. 2) that shows the distribution of
baryons over the 1

4 logarithmic S-intervals. Based on Table 3,

Fig. 4: This histogram was built based on tables 2, 3, 4, 5 and shows
the distribution of baryons (dark grey bars), mesons (light grey bars)
and leptons (white bars) over 1

4 logarithmic units wide S-intervals
in the range of the electron mass (S = 0, white bar) to the W- and
Z-bosons (S = 12, black bar).

Figure 3 shows the distribution of mesons, but Figure 4 shows
the distribution of baryons, mesons, leptons and gauge bosons
over the 1

4 logarithmic S-intervals in the range of 0 to 12 log-
arithmic units.

All known baryons are distributed over an interval of 2
logarithmic units, of S = [7; 2] to S = [9; 2], as Figure 2 shows.
Maximum of baryons occupy the logarithmic center S = [8; 2]
of this interval. Figure 3 shows that maximum of mesons
occupy the spectral node S = [8] that split up the interval of
S = [0] to S = [12] between the electron and the W- and Z-
bosons proportionally of 2

3 .
The mass distribution of leptons isn’t different of the

baryon and meson mass distributions, but follows them, as
Figure 4 shows. The mass of the most massive lepton (tauon)
is near the maximum of the baryon and meson mass distribu-
tions, as Figures 2–4 show.

4 Resume

In the framework of the present model discrete scaling mass
distributions arise as result of natural oscillations in chain sys-
tems of harmonic quantum oscillators. The observable mass
distributions of baryons, mesons, leptons and gauge bosons
are connected by the model scaling exponent 2

3 . In addition,
with high precision, the masses of known fundamental and
stable particles are connected by the model scaling exponent
3
2 . Presumably, the complete mass distribution of particles is
logarithmically symmetric and, possibly, massive particles
don’t arise because of a symmetry violation, but as resonance
states in chain systems of quantum oscillators.
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Table 2. The measured masses of baryons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

N-baryons, S = 0, I = 1/2
proton 938.27203 ±

0.00008
815 – 1047 7.375 – 7.625 [7; 2]

neutron 939.565346 ±
0.000023

815 – 1047 7.375 – 7.625 [7; 2]

N(1440) 1420 – 1470 1344 – 1726 7.875 – 8.125 [8]
N(1520) 1515 – 1525 1344 – 1726 7.875 – 8.125 [8]
N(1650) 1645 – 1670 1344 – 1726 7.875 – 8.125 [8]
N(1675) 1670 – 1680 1344 – 1726 7.875 – 8.125 [8]
N(1680) 1680 – 1690 1344 – 1726 7.875 – 8.125 [8]
N(1710) 1680 – 1740 1344 – 1726 7.875 – 8.125 [8]
N(1720) 1700 – 1750 1344 – 1726 7.875 – 8.125 [8]
N(2190) 2100 – 2200 1726 – 2216 8.125 – 8.375 [8; 4]
N(2220) 2200 – 2300 2216 – 2846 8.375 – 8.625 [8; 2]
N(2250) 2200 – 2350 2216 – 2846 8.375 – 8.625 [8; 2]
N(2600) 2550 – 2750 2216 – 2846 8.375 – 8.625 [8; 2]
∆-baryons, S = 0, I = 1/2
∆(1232) 1231 – 1233 1047 – 1344 7.625 – 7.875 [8;−4]
∆(1600) 1550 – 1700 1344 – 1726 7.875 – 8.125 [8]
∆(1620) 1600 – 1660 1344 – 1726 7.875 – 8.125 [8]
∆(1700) 1670 – 1750 1344 – 1726 7.875 – 8.125 [8]
∆(1905) 1865 – 1915 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1910) 1870 – 1920 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1920) 1900 – 1970 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1930) 1900 – 2020 1726 – 2216 8.125 – 8.375 [8; 4]
∆(1950) 1915 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
∆(2420) 2300 – 2500 2216 – 2846 8.375 – 8.625 [8; 2]
Λ-baryons, S = − 1, I = 0
Λ 1115.683 ± 0.006 1047 – 1344 7.625 – 7.875 [8;−4]
Λ(1405) 1406 ± 4 1344 – 1726 7.875 – 8.125 [8]
Λ(1520) 1519.5 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Λ(1600) 1560 – 1700 1344 – 1726 7.875 – 8.125 [8]
Λ(1670) 1660 – 1680 1344 – 1726 7.875 – 8.125 [8]
Λ(1690) 1685 – 1695 1344 – 1726 7.875 – 8.125 [8]
Λ(1800) 1720 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1810) 1750 – 1850 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1820) 1815 – 1825 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1830) 1810 – 1830 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(1890) 1850 – 1910 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2100) 2090 – 2110 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2110) 2090 – 2140 1726 – 2216 8.125 – 8.375 [8; 4]
Λ(2350) 2340 – 2370 2216 – 2846 8.375 – 8.625 [8; 2]
Σ-baryons, S = − 1, I = 1
Σ+ 1189.37 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Σ0 1192.642 ± 0.024 1047 – 1344 7.625 – 7.875 [8;−4]
Σ− 1197.449 ± 0.030 1047 – 1344 7.625 – 7.875 [8;−4]
Σ(1385)+ 1382.8 ± 0.4 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)0 1383.7 ± 1.0 1344 – 1726 7.875 – 8.125 [8]
Σ(1385)− 1387.2 ± 0.5 1344 – 1726 7.875 – 8.125 [8]
Σ(1660) 1630 – 1690 1344 – 1726 7.875 – 8.125 [8]
Σ(1670) 1665 – 1685 1344 – 1726 7.875 – 8.125 [8]
Σ(1750) 1730 – 1800 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1775) 1770 – 1780 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1915) 1900 – 1935 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(1940) 1900 – 1950 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2030) 2025 – 2040 1726 – 2216 8.125 – 8.375 [8; 4]
Σ(2250) 2210 – 2280 2216 – 2846 8.375 – 8.625 [8; 2]
Ξ-baryons, S = − 2, I = 1/2
Ξ0 1314.86 ± 0.20 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ− 1321.71 ± 0.07 1047 – 1344 7.625 – 7.875 [8;−4]
Ξ(1530)0 1531.80 ± 0.32 1344 – 1726 7.875 – 8.125 [8]
Ξ(1530)− 1535.0 ± 0.6 1344 – 1726 7.875 – 8.125 [8]
Ξ(1690) 1690 ± 10 1344 – 1726 7.875 – 8.125 [8]
Ξ(1820) 1823 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(1950) 1950 ± 15 1726 – 2216 8.125 – 8.375 [8; 4]
Ξ(2030) 2025 ± 5 1726 – 2216 8.125 – 8.375 [8; 4]
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baryons measured mass mass interval S-interval S
MeV/c2 MeV/c2

Ω-baryons, S = − 3, I = 0
Ω− 1672.45 ± 0.29 1344 – 1726 7.875 – 8.125 [8]
Ω(2250)− 2252 ± 9 2216 – 2846 8.375 – 8.625 [8; 2]
charmed baryons, C = + 1
Λ+

c 2286.46 ± 0.14 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2595)+ 2595.4 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2625)+ 2628.1 ± 0.6 2216 – 2846 7.375 – 8.625 [8; 2]
Λc(2880)+ 2881.53 ± 0.35 2846 – 3654 8.625 – 8.875 [9;−4]
Λc(2940)+ 2939.3 ± 1.5 2846 – 3654 8.625 – 8.875 [9;−4]

Σc(2455)++ 2454.02 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)+ 2452.9 ± 0.4 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2455)0 2453.76 ± 0.18 2216 – 2846 8.375 – 8.625 [8; 2]

Σc(2801)++ 2801 ± 6 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)+ 2792 ± 14 2216 – 2846 8.375 – 8.625 [8; 2]
Σc(2800)0 2802 ± 7 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ+
c 2467.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ0
c 2470.88 ± 0.8 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′+
c 2575.6 ± 3.1 2216 – 2846 8.375 – 8.625 [8; 2]

Ξ
′0
c 2577.9 ± 2.9 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2645)+ 2645.9 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2645)0 2645.9 ± 0.5 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2790)+ 2789.1 ± 3.2 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2790)0 2791.8 ± 3.3 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2815)+ 2816.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
Ξc(2815)0 2819.6 ± 1.2 2216 – 2846 8.375 – 8.625 [8; 2]

Ξc(2980)+ 2971.4 ± 3.3 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(2880)0 2968.0 ± 2.6 2846 – 3654 8.625 – 8.875 [9;−4]

Ξc(3080)+ 3077.0 ± 0.4 2846 – 3654 8.625 – 8.875 [9;−4]
Ξc(3080)0 3079.9 ± 1.4 2846 – 3654 8.625 – 8.875 [9;−4]

Ω0
c 2695.2 ± 1.7 2216 – 2846 8.375 – 8.625 [8; 2]

Ωc(2770)0 2765.9 ± 2.0 2216 – 2846 8.375 – 8.625 [8; 2]
bottom baryons, B = − 1
Λ0

b 5620.2 ± 1.6 4692 – 6025 9.125 – 9.375 [9; 4]

Σ+
b 5807.8 ± 2.7 4692 – 6025 9.125 – 9.375 [9; 4]

Σ−b 5815.2 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]

Σ∗+b 5829.0 ± 3.4 4692 – 6025 9.125 – 9.375 [9; 4]
Σ∗−b 5836.4 ± 2.8 4692 – 6025 9.125 – 9.375 [9; 4]

Ξb 5792.4 ± 3.0 4692 – 6025 9.125 – 9.375 [9; 4]
Σ−b 6165 ± 16 6025 – 7736 9.375 – 9.625 [9; 2]

Table 3. The measured masses of mesons [6], the calculated S-intervals of
1
4 logarithmic units width and the corresponding calculated mass-intervals.

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

light unflavored mesons S = C = B = 0
π± 139.57018 ±

0.00035
110 – 142 5.375 – 5.625 [5; 2]

π0 134.9766±0.0006 110 – 142 5.375 – 5.625 [5; 2]
η 547.853 ± 0.024 495 – 635 6.875 – 7.125 [7]
ρ(770) 775.49 ± 0.34 635 – 815 7.125 – 7.375 [7; 4]
ω(782) 782.65 ± 0.12 635 – 815 7.125 – 7.375 [7; 4]
ρ′(958) 957.78 ± 0.06 815 – 1047 7.375 – 7.626 [7; 2]
f0(980) 980 ± 10 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]

mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
a0(980) 980 ± 20 815 – 1047 7.375 – 7.626 [7; 2]
φ(1020) 1019.455 ± 0.020 815 – 1047 7.375 – 7.626 [7; 2]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
h1(1170) 1170 ± 20 1047 – 1344 7.626 – 7.875 [8;−4]
b1(1235) 1229.5 ± 3.2 1047 – 1344 7.626 – 7.875 [8;−4]
a1(1260) 1230 ± 40 1047 – 1344 7.626 – 7.875 [8;−4]
f2(1270) 1275.1 ± 1.2 1047 – 1344 7.626 – 7.875 [8;−4]
f1(1285) 1281.8 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
η(1295) 1294 ± 4 1047 – 1344 7.626 – 7.875 [8;−4]
π(1300) 1300 ± 100 1047 – 1344 7.626 – 7.875 [8;−4]
a2(1320) 1318.3 ± 0.6 1047 – 1344 7.626 – 7.875 [8;−4]
f0(1370) 1200 – 1500 1344 – 1726 7.875 – 8.125 [8]
π1(1400) 1351 ± 30 1344 – 1726 7.875 – 8.125 [8]
η(1450) 1409.8 ± 2.5 1344 – 1726 7.875 – 8.125 [8]
f1(1420) 1426.4 ± 0.9 1344 – 1726 7.875 – 8.125 [8]
ω(1400) 1400 – 1450 1344 – 1726 7.875 – 8.125 [8]
a0(1450) 1474 ± 19 1344 – 1726 7.875 – 8.125 [8]
ρ(1450) 1465 ± 25 1344 – 1726 7.875 – 8.125 [8]
η(1475) 1476 ± 4 1344 – 1726 7.875 – 8.125 [8]
f0(1500) 1505 ± 6 1344 – 1726 7.875 – 8.125 [8]
f2(1525) 1525 ± 5 1344 – 1726 7.875 – 8.125 [8]
π1(1600) 1662 ± 15 1344 – 1726 7.875 – 8.125 [8]
η2(1645) 1617 ± 5 1344 – 1726 7.875 – 8.125 [8]
ω(1650) 1670 ± 30 1344 – 1726 7.875 – 8.125 [8]
ω3(1670) 1667 ± 4 1344 – 1726 7.875 – 8.125 [8]
π2(1670) 1672.4 ± 3.2 1344 – 1726 7.875 – 8.125 [8]
φ(1680) 1680 ± 20 1344 – 1726 7.875 – 8.125 [8]
ρ3(1690) 1688.8 ± 2.1 1344 – 1726 7.875 – 8.125 [8]
ρ(1700) 1720 ± 20 1344 – 1726 7.875 – 8.125 [8]
f0(1710) 1720 ± 6 1344 – 1726 7.875 – 8.125 [8]
π(1800) 1816 ± 14 1726 – 2216 8.125 – 8.375 [8; 4]
φ3(1850) 1854 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
π2(1880) 1895 ± 16 1726 – 2216 8.125 – 8.375 [8; 4]
f2(1950) 1944 ± 12 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2100) 2011 ± 80 1726 – 2216 8.125 – 8.375 [8; 4]
a4(2040) 2001 ± 10 1726 – 2216 8.125 – 8.375 [8; 4]
f4(2050) 2018 ± 11 1726 – 2216 8.125 – 8.375 [8; 4]
f2(2300) 2297 ± 28 2216 – 2846 8.375 – 8.625 [8; 2]
f2(2340) 2339 ± 60 2216 – 2846 8.375 – 8.625 [8; 2]
strange mesons S = ± 1C = B = 0
K± 493.677 ± 0.016 385 – 495 6.625 – 6.875 [7;−4]
K0 497.614 ± 0.024 385 – 495 6.625 – 6.875 [7;−4]
K∗(892)± 891.66 ± 0.26 815 – 1047 7.375 – 7.625 [7; 2]
K∗(892)0 896.00 ± 0.25 815 – 1047 7.375 – 7.625 [7; 2]
K1(1270) 1272 ± 7 1047 – 1344 7.625 – 7.875 [8;−4]
K1(1400) 1403 ± 7 1344 – 1726 7.875 – 8.125 [8]
K∗(1410) 1414 ± 15 1344 – 1726 7.875 – 8.125 [8]
K∗0 (1430) 1425 ± 50 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)± 1425.6 ± 1.5 1344 – 1726 7.875 – 8.125 [8]
K∗2 (1430)0 1432.4 ± 1.3 1344 – 1726 7.875 – 8.125 [8]
K∗(1680) 1717 ± 27 1344 – 1726 7.875 – 8.125 [8]
K2(1770)± 1773 ± 8 1726 – 2216 8.125 – 8.375 [8; 4]
K∗3 (1780) 1776 ± 7 1726 – 2216 8.125 – 8.375 [8; 4]
K2(1820) 1816 ± 13 1726 – 2216 8.125 – 8.375 [8; 4]
K∗4 (2045) 2045 ± 9 1726 – 2216 8.125 – 8.375 [8; 4]
charmed mesons S = ± 1
D± 1869.62 ± 0.20 1726 – 2216 8.125 – 8.375 [8; 4]
D0 1864.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2007)0 2006.97 ± 0.19 1726 – 2216 8.125 – 8.375 [8; 4]
D∗(2010)± 2010.27 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]
D1(2420)0 2423.3 ± 1.3 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)0 2461.1 ± 1.6 2216 – 2846 8.375 – 8.625 [8; 2]
D8

2(2460)± 2460.1 ± 3.5 2216 – 2846 8.375 – 8.625 [8; 2]
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mesons measured mass mass interval S-interval S
MeV/c2 MeV/c2

charmed, strange mesons C = S = ± 1
D±S 1968.49 ± 0.34 1726 – 2216 8.125 – 8.375 [8; 4]
D∗±S 2112.3 ± 0.5 1726 – 2216 8.125 – 8.375 [8; 4]
D∗S 0(2317)± 2317.8 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2460)± 2459.6 ± 0.6 2216 – 2846 8.375 – 8.625 [8; 2]
DS 1(2536)± 2535.35 ± 0.34 2216 – 2846 8.375 – 8.625 [8; 2]
DS 2(2573)± 2572.6 ± 0.9 2216 – 2846 8.375 – 8.625 [8; 2]
bottom mesons B = ± 1
B± 5279.17 ± 0.29 4692 – 6025 9.125 – 9.375 [9; 4]
B0 5279.50 ± 0.3 4692 – 6025 9.125 – 9.375 [9; 4]
B∗ 5325.1 ± 0.5 4692 – 6025 9.125 – 9.375 [9; 4]
B1(5721)0 5723.4 ± 2.0 4692 – 6025 9.125 – 9.375 [9; 4]
B∗2(5747)0 5743 ± 5 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, strange mesons B = ± 1, S = ± 1
B0

S 5366.3 ± 0.6 4692 – 6025 9.125 – 9.375 [9; 4]
B∗S 5415.4 ± 1.4 4692 – 6025 9.125 – 9.375 [9; 4]
bottom, charmed mesons B = S = ± 1
B±c 6277 ± 6 6025 – 7736 9.375 – 9.625 [9; 2]
cc-mesons B = S = ± 1
ηc(1S ) 2980.5 ± 1.2 2846 – 3654 8.625 – 8.875 [9;−4]
J/psi(1S ) 3096.916 ±

0.011
2846 – 3654 8.625 – 8.875 [9;−4]

Xc0(1P) 3414.75 ± 0.31 2846 – 3654 8.625 – 8.875 [9;−4]
Xc1(1P) 3510.66 ± 0.07 2846 – 3654 8.625 – 8.875 [9;−4]
hc(1P) 3525.67 ± 0.32 2846 – 3654 8.625 – 8.875 [9;−4]
Xc2(1P) 3556.20 ± 0.09 2846 – 3654 8.625 – 8.875 [9;−4]
ηc(2S ) 3637 ± 4 2846 – 3654 8.625 – 8.875 [9;−4]
ψ(2S ) 3686.09 ± 0.04 3654 – 4692 8.875 – 9.125 [9]
ψ(3770) 3772.92 ± 0.35 3654 – 4692 8.875 – 9.125 [9]
X(3872) 3872.3 ± 0.8 3654 – 4692 8.875 – 9.125 [9]
X(3945) 3916 ± 6 3654 – 4692 8.875 – 9.125 [9]
ψ(4400) 4039 ± 1 3654 – 4692 8.875 – 9.125 [9]
ψ(4160) 4153 ± 3 3654 – 4692 8.875 – 9.125 [9]
ψ(4260) 4263 ± 9 3654 – 4692 8.875 – 9.125 [9]
ψ(4415) 4421 ± 4 3654 – 4692 8.875 – 9.125 [9]
bb-mesons
Y(1S ) 9460.30 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb0(1P) 9859.44 ± 0.42 7736 – 9933 9.625 – 9.875 [10;−4]
χb1(1P) 9892.78 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
χb2(1P) 9912.21 ± 0.26 7736 – 9933 9.625 – 9.875 [10;−4]
Y(2S ) 10023.26 ±

0.31
9933 – 12754 9.875 – 10.125 [10]

χb0(2P) 10232.5 ± 0.4 9933 – 12754 9.875 – 10.125 [10]
χb1(2P) 10255.46 ±

0.22
9933 – 12754 9.875 – 10.125 [10]

χb2(2P) 10268.65 ±
0.22

9933 – 12754 9.875 – 10.125 [10]

Y(3S ) 10355.2 ± 0.5 9933 – 12754 9.875 – 10.125 [10]
Y(4S ) 10579.4 ± 1.2 9933 – 12754 9.875 – 10.125 [10]
Y(10860) 10865 ± 8 9933 – 12754 9.875 – 10.125 [10]
Y(11020) 11019 ± 8 9933 – 12754 9.875 – 10.125 [10]

Table 4. The measured masses of leptons [6], the calculated S-intervals of 1
4

logarithmic units width and the corresponding calculated mass-intervals.

leptons measured mass mass interval S-interval S
MeV/c2 MeV/c2

electron 0.510998910 ± 0.000000013 0 0 [0]
µ 105.658367 ± 0.000004 86 – 110 5.125 – 5.375 [5; 4]
τ 1776.84 ± 0.17 1726 – 2216 8.125 – 8.375 [8; 4]

Table 5. The measured masses of gauge bosons [6], the calculated S-
intervals of 1

4 logarithmic units width and the corresponding calculated
mass-intervals.

gauge bosons measured mass mass interval S-interval S
MeV/c2 MeV/c2

W 80398 ± 25 73395 – 94241 11.875 – 12.125 [12]
Z 91187, 6 ± 2.1 73395 – 94241 11.875 – 12.125 [12]
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