
Volume 15 (2019) PROGRESS IN PHYSICS Issue 3 (October)

The Physics of Transcendental Numbers

Hartmut Müller

E-mail: hm@interscalar.com

The difference between rational, irrational algebraic and transcendental numbers is not
only a mathematical task, but appears to be a stability criterion in complex dynamic
systems. This paper introduces an approach to study the physical consequences of arith-
metic properties of real numbers being ratios of measured quantities. This approach al-
lows reformulating and resolving some unsolved tasks in particle physics, astrophysics
and cosmology.

Introduction

Natural systems are highly complex and at the same time they
impress us with their lasting stability. For instance, the solar
system hosts at least 800 thousand orbiting each other bodies.
If numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states [1, 2]
that contradict the physical reality in the solar system. In the
last century, advanced models [3–7] were developed, which
explain basic features of the solar system formation. How-
ever, many metric characteristics of the solar system they do
not predict. The problem is that Kepler’s laws, the Newton
law of gravitation and the Einstein field equations allow for
an infinite diversity of orbits.

In reality, however, planets in the extrasolar systems Trap-
pist 1, Kepler 20 and many others have nearly the same orbits
as some moons of Jupiter, Saturn, Uranus and Neptune [8].
Why they prefer similar orbits if there are infinite possibili-
ties? Up to now, there have not been sufficiently convincing
explanations why the solar system has installed the orbital
periods 87.97 days (Mercury), 224,70 days (Venus), 365.25
days (Earth), 686.97 days (Mars), 4.60 years (Ceres), 11.87
years (Jupiter), 29.46 years (Saturn), 84.02 years (Uranus),
164.80 years (Neptune) and 248.00 years (Pluto). In conven-
tional models, they appear as to be accidental.

Furthermore, celestial mechanics does not know any law
concerning the periods of planetary rotation. Though, if the
periods of rotation are accidental, why then have the Moon
and the Sun similar periods of rotation? Why have the Earth,
Mars and the planetoid Eris similar periods of rotation? Why
have Jupiter, Saturn and the planetoid Ceres similar periods
of rotation?

Not only orbital and rotational periods, but also the Earth
axial precession cycle (25,770 years), the obliquity variation
cycle (41,000 years) as well as the apsidal precession cycle
and the orbital eccentricity cycle (both 112,000 years) appear
as to be accidental. And this isn’t just a shortcoming of astro-
physics only.

In particle physics, bosons are considered to have no rest
mass, and there are no convincing explanations why the W/Z-
bosons must be 90 times as massive as the proton. A rough
shortcoming of the Higgs-mechanism of particle mass gener-

ation is that the origin of the Higgs-mass itself is not elabo-
rated and this leads to a vicious circle.

Furthermore, there is no convincing explanation why the
proton-to-electron mass ratio must be close to 1836 and why
these fermions are stable.

Of course, in the standard model, the electron is stable
because it is the least massive particle with non-zero electric
charge. Its decay would violate charge conservation. Actu-
ally, this answer only readdresses the question: What causes
then the stability of the elementary electric charge? In the
same model, the proton is stable, because it is the lightest
baryon and the baryon number is conserved. However, also
this answer only readdresses the question: Why then is the
proton the lightest baryon? To answer this question, the stan-
dard model introduces quarks which violate the conservation
of the integer elementary electric charge.

Measurements of the cosmic microwave background radi-
ation (CMBR) are critical to cosmology, since any proposed
model of the universe must explain it. However, in Big Bang
cosmology, its current average temperature of 2.725 K ap-
pears to be accidental, because CMBR is interpreted as a rem-
nant from an early stage of the observable universe when stars
and planets didn’t exist yet, and the universe was denser and
much hotter.

This paper introduces an approach that considers arith-
metic properties of the measured ratios of physical quanti-
ties. This approach allows not only answering our questions
above, but also reformulating and resolving some unsolved
tasks in paticle physics, astrophysics and cosmology.

Methods

Measurement is the source of data that allow us developing
and proofing theoretical models of the reality. The result of a
measurement is the ratio of two physical quantities where one
of them is the reference quantity called unit of measurement.
In general, this ratio is a real value that can approximate a
rational, irrational algebraic or transcendental number.

In [9] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of sta-
bility in complex systems. For instance, integer and rational
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frequency ratios provide resonance interaction that can desta-
bilize a system.

With reference to the solar system and its stability, we
may therefore expect that the ratio of any two orbital periods
should be not rational. However, it is not so simple to clarify
the type of number a measured ratio approximates. In gen-
eral, there is no possibility to know it for sure. For example,
how can we find out if the Venus-to-Earth orbital period ratio
approximates a rational, irrational algebraic or transcendental
number?

From the first impression, the obtained value 0.615 seems
to be a rational number, but higher resolution data [10] de-
liver more digits, for example 0.615198 years = 224.701 days
= 224 days, 16 hours and 49 minutes. Indeed, also this value
is an average. In reality, the sidereal orbital period of Venus
is not constant, but varies between 224.695 days = 0.61518
years and 224.709 days = 0.61522 years. According to classic
models, that is due to perturbations from other planets, mainly
Jupiter and Earth. As well, the orbital period of the Earth is
not constant, but shows cyclic variations in the duration up to
7 minutes [11]. However, several authors [12, 13] have sug-
gested that the Venus-to-Earth orbital period ratio coincides
with 8/13 approximating the golden section φ = (

√
5–1)/2 =

0.618. . . that is an irrational algebraic number.
It is remarkable that approximation interconnects all types

of real numbers – rational, irrational algebraic and transcen-
dental. In 1950, the mathematician Khinchin [14] made an
important discovery: He could demonstrate that continued
fractions deliver biunique (one-to-one) representations of all
real numbers, rational and irrational. Whereas infinite con-
tinued fractions represent irrational numbers, finite continued
fractions represent always rational numbers. In this way, any
irrational number can be approximated by finite continued
fractions, which are the convergents and deliver always the
nearest and quickest rational approximation.

It is notable that the nearest rational approximation of an
irrational number by a finite continued fraction is not a task
of computation, but only an act of termination of the fractal
recursion. For example, the golden number φ = (

√
5+1)/2 has

a biunique representation as simple continued fraction:

φ = 1 +
1

1 +
1

1 +
1

1 + · · ·

.

To save space, in the following we use square brackets to
write down continued fractions, for example the golden num-
ber φ = [1; 1, 1, . . . ]. So long as the sequence of denominators
is considered as infinite, this continued fraction represents the
irrational number φ. If we truncate the continued fraction, the
sequence of denominators will be finite and we get a conver-
gent that is always the nearest rational approximation of the
irrational number φ.

Let’s see how it works. Increasing always the length of
the continued fraction, we obtain a sequence of rational ap-
proximations of φ, from the worst to always better and better
ones (see Table 1).

Figure 1 demonstrates the process of step by step approx-
imation. As we can see, the rational approximations oscil-
late around the eigenvalue φ of the continued fraction that
is shown as dotted line. With every step the approximation
comes closer and closer to φ, never reaching it and describing
a damped asymptotic oscillation around φ.
In 1950 Gantmacher and Krein [15] have demonstrated that
continued fractions are solutions of the Euler-Lagrange equa-
tion for low amplitude harmonic oscillations in simple chain
systems. Terskich [16] generalized this method for the analy-
sis of oscillations in branched chain systems. The continued
fraction method can also be extended to the analysis of chain
systems of harmonic quantum oscillators [17].

The rational approximations of the golden number φ are
always ratios of neighboring Fibonacci numbers – the ele-
ments of the recursive sequence 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, . . . where the sum of two neighbors always yields the
following number [18].

As we can see, only the 10th approximation gives the cor-

Table 1: Approximations of the irrational number φ.

[1] = 1
[1; 1] = 2
[1; 1, 1] = 3/2 = 1.5
[1; 1, 1, 1] = 5/3 = 1.66
[1; 1, 1, 1, 1] = 8/5 = 1.6
[1; 1, 1, 1, 1, 1] = 13/8 = 1.625
[1; 1, 1, 1, 1, 1, 1] = 21/13 = 1.615384
[1; 1, 1, 1, 1, 1, 1, 1] = 34/21 = 1.619047
[1; 1, 1, 1, 1, 1, 1, 1, 1] = 55/34 = 1.61764705882352941
[1; 1, 1, 1, 1, 1, 1, 1, 1, 1] = 89/55 = 1.618

Fig. 1: The approximation steps 0 – 9 of the golden number φ =

1.618. . . (dotted line) by continued fraction [1; 1, 1, . . . ].

Hartmut Müller. The Physics of Transcendental Numbers 149



Volume 15 (2019) PROGRESS IN PHYSICS Issue 3 (October)

rect third decimal of φ. The approximation process is very
slow because of the small denominators. In fact, the denomi-
nators in the continued fraction of φ are the smallest possible
and consequently, the approximation speed is the lowest pos-
sible. The golden number φ is therefore treated as the “most
irrational” number in the sense that a good approximation of
φ by rational numbers cannot be given with small quotients.

On the contrary, transcendental numbers can be approxi-
mated exceptionally well by rational numbers, because their
continued fractions contain large denominators and can be
truncated with minimum loss of precision. For instance, the
simple continued fraction of the number π = 3.1415927. . . =

[3; 7, 15, 1, 292, . . . ] delivers the following sequence of ra-
tional approximations:

[3] = 3
[3; 7] = 3.142857
[3; 7, 15] = 3.14150943396226
[3; 7, 15, 1] = 3.1415929. . .

We can see that the 2nd approximation delivers the first 2 dec-
imals correctly, and the 4th approximation shows already 6
correct decimals.

Much like the continued fraction of the golden number
φ contains only the number 1, a prominent continued frac-
tion [19] of Euler’s number contains all natural numbers as
denominators and numerators, forming an infinite fractal se-
quence of harmonic intervals:

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + · · ·

.

As Euler’s number is transcendental, it can also be repre-
sented as a continued fraction with quickly increasing denom-
inators:

e = 1 +
2

1 +
1

6 +
1

10 +
1

14 + · · ·

.

In this way, already the 4th approximation delivers the first
3 decimals correctly and returns in fact the rounded Euler’s
number e = 2.71828. . . of 5 decimals’ resolution:

1
3
2.714285
2.7183. . .

This special arithmetic property of continued fractions [20] of
transcendental numbers has the consequence that transcen-
dental numbers are distributed near by rational numbers of

small quotients or close to integers, like e3 = 20.08. . . or e4.5

= 90.01. . . . This can create the impression that complex sys-
tems like the solar system provide ratios of physical quanti-
ties that approximate rational numbers. More likely, they ap-
proximate transcendental numbers, which are located close to
rational numbers.

Namely, transcendental numbers define the preferred ra-
tios of quantities which avoid destabilizing resonance inter-
action [9]. In this way, they sustain the lasting stability of
periodic processes in complex dynamic systems. At the same
time, a good rational approximation can be induced quickly,
if the system temporarily requires local resonance interaction.
Though, algebraic irrational numbers like

√
2 or the golden

number φ do not compellingly prevent resonance, because
they can be transformed into integer or rational numbers by
multiplication.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of the fre-
quency ratios should be close to integer 1, 2, 3, 4, . . . or
rational values 1

2 ,
1
3 ,

1
4 , . . . In [21] we exemplified our hypoth-

esis in particle physics, astrophysics, cosmology, geophysics,
biophysics and engineering.

Thanks to Khinchin’s [14] discovery, any real number has
a biunique representation as a continued fraction. Now let’s
apply this to the real argument x of the natural exponential
function ex itself:

x = [n0; n1, n2, . . . , nk]. (1)

All denominators n1, n2, . . . , nk of the continued fraction in-
cluding the free link n0 are integer numbers. All numerators
equal 1. The length of the continued fraction is given by the
number k of layers.

The canonical form (all numerators equal 1) does not limit
our conclusions, because every continued fraction with partial
numerators different from 1 can be transformed into a canon-
ical continued fraction using the Euler equivalent transforma-
tion [22]. With the help of the Lagrange [23] transforma-
tion, every continued fraction with integer denominators can
be represented as a continued fraction with natural denomi-
nators that is always convergent [24].

Now we are going to study the fractal distribution of the
rational eigenvalues of the finite continued fractions (1). The
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first layer is given by the truncated after n1 continued fraction:

x = [n0; n1] = n0 +
1
n1
.

For the beginning we take n0 = 0. The denominators n1 follow
the sequence of integer numbers ±1, ±2, ±3 etc. The second
layer is given by the truncated after n2 continued fraction:

x = [n0; n1, n2] = n0 +
1

n1 +
1
n2

.

Figure 2 shows the first and the second layer in comparison.
As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . . are
the attractor points of the distribution. In these points, the
distribution density always reaches a local maximum. Whole
numbers 0,±1, . . . are the main attractors of the distribution.

Now let’s remember that we are observing the fractal dis-
tribution of rational values x = [n0; n1, n2, . . . , nk] of the real
argument x of the natural exponential function ex. What we
see is the fractal distribution of transcendental numbers of the
type exp([n0; n1, n2, . . . , nk]) on the natural logarithmic scale.
Near integer exponents the distribution density of these tran-
scendental numbers is maximum.

Consequently, for integer exponents x, the natural expo-
nential function ex defines attractor points of transcendental
numbers and create islands of stability.

Figure 2 shows that these islands are not points, but ranges
of stability. Integer exponents 0,±1,±2,±3, . . . are attractors
which form the widest ranges of stability. Half exponents
±1/2 form smaller islands, one third exponents ±1/3 form
the next smaller islands and one fourth exponents ±1/4 form
even smaller islands of stability etc.
For rational exponents, the natural exponential function is al-
ways transcendental [25]. Increasing the length of the con-
tinued fraction (1), the density of the distribution of transcen-
dental numbers of the type exp([n0; n1, n2, . . . , nk]) is increas-
ing as well. Nevertheless, their distribution is not homoge-
neous, but fractal. Applying continued fractions and truncat-
ing them, we can represent the real exponents x of the natural
exponential function ex as rational numbers and make visible
their fractal distribution.

Here I would like to underline that the application of con-
tinued fractions doesn’t limit the universality of our conclu-
sions, because continued fractions deliver biunique represen-

Fig. 2: The Fundamental Fractal – the fractal distribution of tran-
scendental numbers of the type ex with x = [n0; n1, n2, . . . , nk] on the
natural logarithmic scale for k = 1 (first layer above) and for k = 2
(second layer below) in the range -3/26 x6 3/2.

tations of all real numbers including transcendental. There-
fore, the fractal distribution of transcendental eigenvalues of
the natural exponential function ex of the real argument x,
represented as continued fraction, is an inherent characteris-
tic of the number continuum. This characteristic we call the
Fundamental Fractal [26].

In physical applications, the natural exponential function
ex of the real argument x is the ratio of two physical quanti-
ties where one of them is the reference quantity called unit of
measurement. Therefore, we can rewrite the equation (1):

ln(X/Y) = [n0; n1, n2, . . . , nk], (2)

where X is the measured physical quantity and Y the unit of
measurement.

In this way, the natural exponential function ex of the ra-
tional argument x = [n0; n1, n2, . . . , nk] generates the set of
preferred ratios X/Y of quantities which avoid destabilizing
resonance and in this way, provide the lasting stability of real
systems regardless of their complexity. This is a very power-
ful conclusion, as we will see in the following.

Results

Now let’s apply this result to our first example of the Venus-
to-Earth orbital period ratio. In this case, X = 224.701 days
and Y = 365.256363 days. Following (2) we calculate the
natural logarithm ln (X/Y):

ln
(

Venus orbital period
Earth orbital period

)
= ln

(
224.701

365.256363

)
= −0.49.

We can see that this logarithm is close to −1/2. The deviation
is only 0.01. In accordance with (2), n0 = 0 and n1 = 2.
Consequently, the Venus-to-Earth orbital period ratio is close
to an attractor point of the Fundamental Fractal, the center of
a local island of stability.

In fact, the ratios of the orbital periods in the solar sys-
tem approximate Euler’s number and its rational powers [9].
Obviously, in this way, the solar system can ovoid destabiliz-
ing resonance of the orbital motions and reach lasting stabil-
ity. For instance, Saturn’s sidereal orbital period [27] equals
10759.22 days, that of Uranus is 30688.5 days. The natural
logarithm of the ratio of their orbital periods is close to 1:

ln
(

Uranus orbital period
S aturn orbital period

)
= ln

(
30688.5
10759.22

)
= 1.05.

Jupiter’s sidereal orbital period equals 4332.59 days, that of
the planetoid Ceres is 1681.63 days. The natural logarithm of
the ratio of their orbital periods is also close to 1:

ln
(

Jupiter orbital period
Ceres orbital period

)
= ln

(
4332.59
1681.63

)
= 0.95.

Not only neighboring orbits show Euler ratios, but far apart
from each other orbits do this as well. Pluto’s sidereal orbital
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period is 90560 days, that of Venus is 224.701 days. The
natural logarithm of the ratio of their orbital periods equals 6:

ln
(

Pluto orbital period
Venus orbital period

)
= ln

(
90560

224.701

)
= 6.00.

In [8] we have analyzed the orbital periods of the largest bod-
ies in the solar system including the moon systems of Jupiter,
Saturn, Uranus and Neptune, as well as the exoplanetary sys-
tems Trappist 1 and Kepler 20. In the result we can assume
that the stability of all these orbital systems is given by the
transcendence of Euler’s number and its rational powers.

The most stable systems we know are of atomic scale.
Because of their exceptional stability, proton and electron
form stable atoms, the structural elements of matter. The
lifespans of the proton and electron surpass everything that
is measurable, exceeding 1030 years. The proton-to-electron
ratio 1836.152674 is considered as fundamental physical con-
stant [28] and it has the same value for their rest energies and
rest masses, frequencies and wavelengths. The natural loga-
rithm is close to seven and a half:

ln (1836.152674) = 7.515427 . . . ' 6 +
3
2
.

This result suggests the assumption that the stability of the
proton and electron comes from the number continuum, more
specifically, from the transcendence of Euler’s number and its
rational powers. Already in the eighties the scaling exponent
3/2 was found in the distribution of particle masses by Valery
Kolombet [29]. Applying hyperscaling [26] by Euler’s num-
ber (tetration), we get the next approximation of the logarithm
of the proton-to-electron ratio:

6 +
ee

10
= 7.515426 . . .

We suppose that hyperscaling by Euler’s number causes the
exceptional stability of proton and electron.

In [17] we have analyzed the mass distribution of hadrons,
mesons, leptons, the W/Z and Higgs bosons and proposed
scaling by Euler’s number and its roots as model of parti-
cle mass generation [30]. In this model, the W±-boson mass
80385 MeV/c2 and the Z0-boson mass 91188 MeV/c2 appear
as the 12 times scaled up electron rest mass 0.511 MeV/c2:

ln
(

W±

electron

)
= ln

(
80385
0.511

)
= 11.97.

ln
(

Z0

electron

)
= ln

(
91188
0.511

)
= 12.09.

Expected, the square root of Euler’s number defines the next
island of stability – in fact, the corresponding state of matter
was discovered in 2012 and interpreted [31] as Higgs-boson
H0 with the rest mass 125.18 GeV/c2:

ln
(

H0

electron

)
= ln

(
125180
0.511

)
= 12.41.

Euler’s number and its rational powers are universal scaling
factors that inhibit resonance and in this way, stabilize peri-
odic processes bound in a chain system. This approach we
call Global Scaling [21]. The rest energy of the proton can be
seen as the 6+ 3

2 times scaled up rest energy of the electron. In
the same way, Pluto’s orbital period can be seen as the 6 times
scaled up by Euler’s number orbital period of Venus or as the
3 times scaled up by Euler’s number orbital period of Jupiter.
Here it is important to understand that only scaling by Euler’s
number and its rational powers inhibits resonance interaction
and provides lasting stability of bound processes and allows
for the formation of stable atoms or stable planetary systems,
for instance.

Now we could ask the question: Starting with the electron
oscillation period, if we continue to scale up always multi-
plying by Euler’s number, will we meet the orbital period, for
instance, of Jupiter?

Actually, it is so. If we multiply the electron oscillation
period 66 times by Euler’s number, we meet exactly the or-
bital period of Jupiter:

ln
(

TJupiter orb

τelectron

)
= ln

(
3.7434 · 108 s
8.093 · 10−21 s

)
= 66.00.

Jupiter’s orbital period TJupiter orb = 4332.59 days = 3.7434×
108 s. The oscillation period of the electron τelectron derives
from its rest energy Eelectron = 0.511 MeV:

τelectron angular = ~/Eelectron = 1.288 × 10−21s,

τelectron = 2π · τelectron angular = 8.093 × 10−21s.

~ is the reduced Planck constant. Data taken from [28]. Sim-
ilarly, the oscillation period of the proton τproton derives from
its rest energy Eproton = 938.272 MeV:

τproton angular = ~/Eproton = 7.015 × 10−25s,

τproton = 2π · τproton angular = 4.408 × 10−24s.

Within our approach, electron and proton define two comple-
mentary classes of stability in the sense of the avoidance of
destabilizing resonance. Here and in the following, we use
the letter E for electron stability and the letter P for proton
stability. In accordance with (2), we use rectangle brackets
for continued fractions. For example, E[66] means the main
attractor 66 of electron stability. In the solar system, this at-
tractor stabilizes the orbital period of Jupiter.

The main attractor E[63] stabilizes the orbital period of
Venus. The siderial orbital period of Venus TVenus orb equals
224.701 days = 1.9414 × 107 s:

ln
(

TVenus orb

τelectron

)
= ln

(
1.9414 × 107 s
8.093 × 10−21 s

)
= 63.04 = E[63].

Not only the orbits of planets and planetoids, but also the or-
bits of moons are stabilized by the Fundamental Fractal (2).
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For example, the main attractor E[61] stabilizes the orbital
period TMoon orb = 27.321661 days = 2.36059 × 106 s of the
Moon:

ln
(

TMoon orb

τelectron

)
= ln

(
2.36059 × 106 s
8.093 × 10−21 s

)
= 60.94 = E[61].

The attractor E[62] stabilizes the orbital period of Saturn’s
moon Iapetus TIapetus orb = 79.3215 days = 6.8534 × 106 s:

ln
(

TIapetus orb

τelectron

)
= ln

(
6.8534 × 106 s
8.093 × 10−21 s

)
= 62.00 = E[62].

As well, it is not surprising that Ceres, the largest body of the
main asteroid belt, orbits the Sun close to a main attractor.
The orbital period of Ceres TCeres orb equals 1681.63 days =

1.4529 × 108 s:

ln
(

TCeres orb

τelectron

)
= ln

(
1.4529 × 108 s
8.093 × 10−21 s

)
= 65.05 = E[65].

Now let us analyze some rotational periods. Although the ro-
tation of Venus is retrograde, its period TVenus rot = 5816.667
hours = 2.094 × 107 s is close to the main attractor E[65]:

ln
(

TVenus rot

τelectron angular

)
= ln

(
2.094 × 107 s

1.288 × 10−21 s

)
= 64.96 = E[65].

As well, the full rotational period of the Sun TS un rot = 34.3
days = 2.9635 × 106 s fits with a main attractor:

ln
(

TS un rot

τelectron angular

)
= ln

(
2.9635 × 106 s
1.288 × 10−21 s

)
= 63.00 = E[63].

As we have seen, the main attractor E[63] stabilizes the rota-
tional period of the Sun as well as the orbital period of Venus.
From this, directly follows:

TVenus orb = 2π · TS un rot

Although π is transcendental, its real power function πx does
not coincide with its own derivatives. Therefore, π cannot
inhibit resonance interaction regarding the derivatives of pe-
riodic processes, but it does not violate the transcendence [32]
of Euler’s number. Within our approach, 2π connects stable
rotation with stable orbital motion.

In addition, the main attractor E[65] stabilizes the orbital
period of Ceres as well as the rotational period of Venus.
From this, directly follows:

TCeres orb = 2π · TVenus rot

Obviously, preferred rotational periods are not accidental, but
follow the Fundamental Fractal (2) and are connected by 2π
with stable, avoiding resonance orbital periods.

Within our approach, the approximation level of an attrac-
tor of stability indicates evolutionary trends. For example,

the orbital period of Venus must still decrease for reaching
the center of E[63]. On the contrary, the orbital period of
the Moon must still increase for reaching the center of E[61].
Actually, exactly this is observed [33].

While all the orbital and rotational periods we have an-
alyzed are stabilized by main attractors of electron stability,
the rotational period of Mars TMars rot = 24.62278 hours =

88642 s approximates a main attractor of proton stability:

ln
(

TMars rot

τproton angular

)
= ln

(
88642 s

7.015 × 10−25 s

)
= 67.01 = P[67].

The rotational period of the Earth TEarth rot = 23.934 hours =

86164 s approximates the same attractor P[67]:

ln
(

TEarth rot

τproton angular

)
= ln

(
86164 s

7.015 × 10−25 s

)
= 66.98 = P[67].

This means that the main attractor P[67] stabilizes the rota-
tional periods of Mars and Earth. Furthermore, the attractor
P[71] stabilizes the orbital period TEarth orb = 365.25636 days
= 3.1558 × 107 s of the Earth:

ln
(

TEarth orb

τproton

)
= ln

(
3.1558 × 107 s
4.408 × 10−24 s

)
= 71.05 = P[71].

Obviously, the Earth’s orbital eccentricity variation cycle
TEarth orb ecc ≈ 112, 600 years = 3.5533 × 1012 s is stabilized
by the main attractor E[77]:

ln
(

TEarth orb ecc

τelectron angular

)
= ln

(
3.5533 × 1012 s
1.288 × 10−21 s

)
= 77.00 = E[77].

This attractor stabilizes also the Earth’s apsidal precession cy-
cle ≈ 112, 000 years. The Earth’s orbital inclination variation
cycle TEarth orb inc ≈ 70, 000 years = 2.209 ·1012 s is stabilized
by the attractor E[76; 2]:

ln
(

TEarth orb inc

τelectron angular

)
= ln

(
2.209 × 1012 s
1.288 × 10−21 s

)
=76.51 = E[76; 2].

The obliquity variation cycle of the ecliptic TEcliptic obliquity ≈

41, 000 years = 1.2938 × 1012 s is stabilized by the main at-
tractor E[76]:

ln
(

TEcliptic obliquity

τelectron angular

)
= ln

(
1.2938 × 1012 s
1.288 × 10−21 s

)
= 75.99 = E[76].

The Earth’s axial precession cycle TEarth axial prec ≈ 25, 770
years = 8.1328× 1011 s is stabilized by the attractor E[75; 2]:

ln
(

TEarth axial prec

τelectron angular

)
= ln

(
8.1328 × 1011 s
1.288 × 10−21 s

)
=75.52 = E[75; 2].

The Earth’s axial nutation period TEarth axial prec = 18.6 years
= 5.8696 × 108 s is stabilized by the main attractor P[74]:

ln
(

TEarth axial prec

τproton

)
= ln

(
5.8696 × 108 s
4.408 × 10−24 s

)
= 73.97 = P[74].
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The Chandler wobble of the Earth’s axis TChandler wobble = 433
days = 3.741× 107 s is stabilized by the main attractor P[73]:

ln
(

TChandler wobble

τproton angular

)
= ln

(
3.741 × 107 s

7.015 × 10−25 s

)
= 73.05 = P[73].

As we have seen, within our approach, the current orbital and
rotational periods in the solar system do not appear as to be
accidental, but correspond with islands of stability defined by
Euler’s number and its rational powers that allow avoiding
destabilizing resonance. This is valid not only for the solar
system, but also for exoplanetary systems as we have shown
in [8]. Furthermore, our approach explains the durations of
the axial precession cycle including the nutation period and
the Chandler wobble, the obliquity variation cycle, the orbital
inclination variation cycle, the apsidal precession cycle and
the orbital eccentricity cycle of the Earth.

In [21] we have shown that the divisibility of their inte-
ger logarithms interconnects all the main attractors of elec-
tron and proton stability and causes interscalar effects, which
stabilize also biophysical periodical processes.

Concluding this overview, I would like to mention that,
within our approach, the current average temperature T CMBR
= 2.725 K [34] of the cosmic microwave background radia-
tion (CMBR) does not appear to be accidental. On the con-
trary, obviously, this process is stable, because its average
temperature is close to a main attractor of proton stability:

ln
(

T CMBR

T proton

)
= ln

(
2.725 K

1.0888 × 1013 K

)
= −29.01 = P[−29].

The proton blackbody temperature T proton = Eproton/k derives
from the proton rest energy Eproton = 938.272 MeV and the
Boltzmann [28] constant k.

Consequently, the current temperature of the CMBR is
not accidental, and it is highly unlikely that this temperature
will still decrease.

In [35] we have shown that integer powers of Euler’s num-
ber define also the ratios of fundamental physical constants.
In our approach, this means that the transcendence of Euler’s
number stabilizes energy-frequency and energy-mass conver-
sions and makes possible the existence of fundamental physi-
cal constants. For instance, the 88th power of Euler’s number
stabilizes the ratio of the speed of light c, the Planck constant
~, the proton rest mass mp and the gravitational constant G:

~ · c
G · m2

p
= e 88. (3)

Quantum mechanics only postulates, but does not derive
the constancy of the Planck constant as well as general rel-
ativity postulates the constancy of the gravitational constant,
but does not derive it. Also special relativity postulates, but
does not derive the constancy of the speed of light. Up to
now, there have not been sufficiently convincing explanations

why the speed of light should be constant, why it should have
the value 299792458 m/s and why it should be the maximum
possible velocity in the universe.

Within our approach, we can derive the speed of light c
from other fundamental physical constants stabilized by in-
teger powers of Euler’s number. Naturally, the proton is not
the only stable particle. The electron is stable as well. Fur-
thermore, the proton-to-electron ratio is stabilized by Euler’s
number and its rational powers. From this and (3), directly
follows that 299792458 m/s is not the maximum speed. In-
deed, rational powers of Euler’s number define a logarithmi-
cally fractal set of stable velocities cn,m which are superlumi-
nal for n > 0:

cn,m = c · e n/m

where n,m are integer numbers. In general, the rational ex-
ponents are finite continued fractions (1). In [35] we verified
the fractal set cn,m of stable subluminal and superluminal ve-
locities on experimental and astrophysical data.

Conclusion

In this paper, we discussed the physical significance of tran-
scendental numbers approximated by ratios of physical quan-
tities. In particular, the transcendence of Euler’s number al-
lows avoiding destabilizing resonance interaction in real sys-
tems and appears to be a universal criterion of stability.

For instance, Euler’s number and its rational powers sta-
bilize the orbital and rotational periods of planets, planetoids
and moons in the solar system.

Our approach allows deriving the mass ratios of the fun-
damental elementary particles electron, proton, W±, Z0 and
H0-boson as well as the temperature 2.725 K of the cosmic
microwave background from Euler’s number and its rational
powers. Integer powers of Euler’s number stabilize also the
ratios of the fundamental physical constants ~, c, G.
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