PAPERS

Müller H. Scale-Invariant Models of Natural Oscillations in Chain Systems and their Cosmological Significance. Progress in Physics, 2017, vol. 4, 187-197
http://www.ptep-online.com/2017/PP-51-01.PDF

Müller H. Fractal Scaling Models of Natural Oscillations in Chain Systems and the Mass Distribution of Particles. Progress in Physics, 2010, vol. 3, 61–66
http://www.ptep-online.com/2010/PP-22-10.PDF

Müller H. Emergence of Particle Masses in Fractal Scaling Models of Matter. Progress in Physics, 2012, vol. 4, 44–47
http://www.ptep-online.com/2012/PP-31-11.PDF

Müller H. Fractal scaling models of natural oscillations in chain systems and the mass distribution of the celestial bodies in the Solar System. Progress in Physics, 2010, vol. 3, 61–66
http://www.ptep-online.com/2010/PP-20-10.PDF

Müller H. Scaling of body masses and orbital periods in the Solar system. Progress in Physics, 2015 vol. 11, 133-135
http://www.ptep-online.com/2015/PP-41-05.PDF

Müller H. Scaling of body masses and orbital periods in the moon systems of Saturn, Jupiter and Uranus. Progress in Physics, 2015 vol. 11, 165-166
http://www.ptep-online.com/2015/PP-41-12.PDF

Müller H. Scaling of body masses and orbital periods in the Solar system as consequence of gravity interaction elasticity. // Abstracts of the XII. International Conference on Gravitation, Astrophysics and Cosmology, dedicated to the centenary of Einstein’s General Relativity theory. Moscow, PFUR, 2015

Müller H. Fractal Scaling Models of Resonant Oscillations in Chain Systems of Harmonic Oscillators. Progress in Physics, 2009, vol. 2, 72-76
http://www.ptep-online.com/2009/PP-17-13.PDF

Ries A. Bipolar Model of Oscillations in a Chain System for Elementary Particle Masses. Progress in Physics, 2012, vol. 4, 20–28
http://www.ptep-online.com/2012/PP-31-06.PDF

Ries A. Qualitative Prediction of Isotope Abundances with the Bipolar Model of Oscillations in a Chain System. Progress in Physics, 2015, vol. 11, 183-186
http://www.ptep-online.com/2015/PP-41-15.PDF

Ries A., Fook M. V. L. Fractal Structure of Nature’s Preferred Masses: Application of the Model of Oscillations in a Chain System. Progress in Physics, 2010, issue 4, 82–89
http://www.ptep-online.com/2010/PP-23-20.PDF

Ries A., Fook M. V. L. Application of the Model of Oscillations in a Chain System to the Solar System. Progress in Physics, 2011, issue 1, 103–111
http://www.ptep-online.com/2011/PP-24-18.PDF

Barenblatt G. I. Scaling. Cambridge University Press, 2003

Schmidt-Nielsen K., Scaling. Why is the animal size so important? Cambridge University Press, 1984

Tatischeff B. Fractals and log-periodic corrections applied to masses and energy levels of several nuclei. arXiv:1107.1976v1 [physics.gen-ph] 11 Jul 2011

Corral A. Universal local versus unified global scaling laws in the statistics of seismicity. // arXiv:cond-mat/0402555 v1 23 Feb 2004

Gutenberg B., Richter C.F.. Seismicity of the Earth and associated phenomena. 2nd ed., Princeton University Press, Princeton, N.J., 1954

Feynman R.P. Very high-energy collisions of hadrons. Phys. Rev. Lett., 1969, v. 23, 1415; Bjorken J.D. Phys. Rev. D, 1969, v. 179, 1547

Viehweger R. Understanding the Universe through Global Scaling. Looking the world with fresh eyes. Poole, UK, 2012, ISBN 978-0-9570579-1-3

 

Русский

Мюллер Х. Скейлинг как фундаментальное свойство собственных колебаний вещества и фрактальная структура пространства-времени. // Основания физики и геометрии. Издательство Российского университета дружбы народов, Москва, 2008

Мюллер Х. Сверхустойчивость как закономерность развития технических объектов. В сб.: Закономерности техники и их применение.Волгоград-София, 1989

Мюллер Х. Общая теория устойчивости и объективные тенденции развития техники. В сб.: Применение законов развития и строения техники в поисковом конструировании. Волгоград, ВПИ, 1987

Мюллер Х. Эволюция материи и распределение метрологических характеристик устойчивых систем. ВИНИТИ, 3808-84, Москва, 1984

Мюллер Х. Спектр масс и времена жизни элементарных систем. Волгоград, ВПИ, 1982, ВИНИТИ 3098-82, Москва, 1982

Численко Л. Л. Структура фауны и флоры в связи с размерами организмов. Изд. Московского университета, 1981

Жирмунский А. В., Кузьмин В. Л. Критические уровни в развитии биологических систем. Москва, Наука, 1982

Коломбет В.А. Макроскопические флуктуации, массы частиц и дискретное пространство-время. // Биофизика, 1992, т. 36, с. 492-499.

 

Portuguese

A Melodia da Criacao. Como o conceito da Escala Global auxilia na busca pelo equilibrio. Entrevista do Hartmut Müller. QuantumLife, vol 2, 2015

 

Deutsch

Global Scaling. Special 1, raum & zeit, Ehlers Verlag, 2010, ISBN 978-3-934196-82-7

Global Scaling. Basis eines neuen wissenschaftlichen Weltbildes. München, 2009, ISBN 978-3-940965-21-9

Müller H. Der quantenphysikalische Informationspool. NEXUS Magazin, Ausgabe 15, Februar – März 2008

Müller H. Global Scaling – die Macht der Maßstäbe. NEXUS Magazin, Ausgabe 12, August – September 2007

Marco Bischof. Global Scaling. Das universelle Prinzip der Strukturierung der Welt. Hagia Chora, vol. 30, 2008, geomantie.net

Kauderer M. Global Scaling – der Maßstab der Natur. // 10. Grazer Holzbau-Fachtagung, Tagungsband, Bionische Tragstrukturen im Holzbau. Technische Universität Graz, Institut für Holzbau und Holztechnologie, Graz, 26.09.2014

Kircheis K. Kircheis R. Nichtlineare Planung in der Architektur. Global Scaling. FGHU, Zürich, gesund-wohnen.ch

Haese G. City Scaling. Sixth Sence Living. Gartenheim Hannover, 2008 / 09, gartenheim.de

Viehweger R. Die Welt mit neuen Augen seh’n. Erkenne das Universum durch Global Scaling. Vorwort von Peter Fraser. RABS Verlag 2010, ISBN 978-0-9570579-1-3

Viehweger R. Eine Analyse der Potenzen (D, C, LM) der Mittel der Psychosomatischen Energetik mit Hilfe von Global Scaling. COMED, vol. 4, 2008

 


Notice: Undefined variable: parabola_comclosed in /var/www/html/wp-content/themes/parabola/comments.php on line 17

Comments are closed